These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6203539)

  • 1. Effects of Pb2+ added in vitro on Ca2+ movements in isolated mitochondria and slices of rat kidney cortex.
    Kapoor SC; van Rossum GD
    Biochem Pharmacol; 1984 Jun; 33(11):1771-8. PubMed ID: 6203539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of inorganic lead in vitro by isolated mitochondria and tissue slices of rat renal cortex.
    Kapoor SC; van Rossum GD; O'Neill KJ; Mercorella I
    Biochem Pharmacol; 1985 May; 34(9):1439-48. PubMed ID: 3994757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inorganic lead in vitro on ion exchanges and respiratory metabolism of rat kidney cortex.
    van Rossum GD; Kapoor SC; Rabinowitz MS
    Arch Toxicol; 1985 Jan; 56(3):175-81. PubMed ID: 3977597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ.
    Suszkiw J; Toth G; Murawsky M; Cooper GP
    Brain Res; 1984 Dec; 323(1):31-46. PubMed ID: 6525509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of lead-induced mitochondrial Ca2+ efflux.
    Chávez E; Jay D; Bravo C
    J Bioenerg Biomembr; 1987 Jun; 19(3):285-95. PubMed ID: 2887557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of brain mitochondrial calcium sequestration by methylmercury.
    Levesque PC; Atchison WD
    J Pharmacol Exp Ther; 1991 Jan; 256(1):236-42. PubMed ID: 1703231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM; Humes HD
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cisplatin nephrotoxicity: decreases in mitochondrial protein sulphydryl concentration and calcium uptake by mitochondria from rat renal cortical slices.
    Zhang JG; Lindup WE
    Biochem Pharmacol; 1994 Mar; 47(7):1127-35. PubMed ID: 8161341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of Ca2+ transport activity by white adipose tissue mitochondria.
    Epping RJ; Taylor WM; Bygrave FL
    FEBS Lett; 1983 Jul; 158(1):21-6. PubMed ID: 6190683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiments on the mechanism of the inhibition of mitochondrial Ca2+ transport by La3+ and ruthenium red.
    Niggli V; Gazzotti P; Carafoli E
    Experientia; 1978 Sep; 34(7):1136-7. PubMed ID: 720498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Ca2+ efflux from kidney and liver mitochondria by unsaturated fatty acids and Na+ ions.
    Roman I; Gmaj P; Nowicka C; Angielski S
    Eur J Biochem; 1979 Dec; 102(2):615-23. PubMed ID: 93538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ruthenium red inhibits energy-dependent and passive Ca2+ transport in permeabilized smooth muscle cells].
    Shinlova OP; Kosterin SA; Veklich TA
    Biokhimiia; 1996 Aug; 61(8):1440-7. PubMed ID: 8962918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of calcium transport in mitochondria isolated from the marine mussel, Mytilus edulis (L.).
    Akberali HB; Earnshaw MJ
    Cell Calcium; 1982 Mar; 3(1):55-66. PubMed ID: 6179627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modelling of Mg2+, ATP-dependent mitochondrial Ca ions transport in smooth muscle cells using protonophore CCCP-sensitive fluorescent tetracycline].
    Vadziuk OB; Borysova LA; Titus OV; Kosterin SO
    Ukr Biokhim Zh (1999); 2003; 75(4):64-74. PubMed ID: 14681977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium red inhibits the mitochondrial Ca2+ uptake in intact bovine spermatozoa and increases the cytosolic Ca2+ concentration.
    Rigoni F; Deana R
    FEBS Lett; 1986 Mar; 198(1):103-8. PubMed ID: 2420637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of lead on the calcium-handling capacity of rat heart mitochondria.
    Parr DR; Harris EJ
    Biochem J; 1976 Aug; 158(2):289-94. PubMed ID: 985429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium.
    Halestrap AP; Quinlan PT; Whipps DE; Armston AE
    Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria.
    Lukács GL; Fonyó A
    Biochim Biophys Acta; 1985 Sep; 809(2):160-6. PubMed ID: 2412581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of 45Ca movements by lowered temperature or lanthanum in rat brain slices.
    Weiss GB; Wheeler SE
    Arch Int Pharmacodyn Ther; 1978 May; 233(1):4-20. PubMed ID: 686907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores.
    Baddams HM; Chang LB; Barritt GJ
    Biochem J; 1983 Jan; 210(1):73-7. PubMed ID: 6405743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.