These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6203613)

  • 21. Organization of the ascending striatal afferents in monkeys.
    Szabo J
    J Comp Neurol; 1980 Jan; 189(2):307-21. PubMed ID: 6767756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates.
    Jones EG; Burton H; Saper CB; Swanson LW
    J Comp Neurol; 1976 Jun; 167(4):385-419. PubMed ID: 818134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei.
    Steriade M; Parent A; Paré D; Smith Y
    Brain Res; 1987 Apr; 408(1-2):372-6. PubMed ID: 2439172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A retino-pulvinar projection in the macaque monkey as visualized by the use of anterograde transport of horseradish peroxidase.
    Mizuno N; Itoh K; Uchida K; Uemura-Sumi M; Matsushima R
    Neurosci Lett; 1982 Jun; 30(3):199-203. PubMed ID: 6180359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thalamocaudate projections in the macaque monkey (a horseradish peroxidase study).
    Druga R; Rokyta R; Benes V
    J Hirnforsch; 1991; 32(6):765-74. PubMed ID: 1821422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal responses related to the novelty and familarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain.
    Wilson FA; Rolls ET
    Exp Brain Res; 1990; 80(1):104-20. PubMed ID: 2358021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of the cortico-caudate projections. A horseradish peroxidase study in the cat.
    Oka H
    Exp Brain Res; 1980; 40(2):203-8. PubMed ID: 6159222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat.
    Spann BM; Grofova I
    J Comp Neurol; 1989 May; 283(1):13-27. PubMed ID: 2471715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of the striatal projections from the rostral caudate nucleus to the globus pallidus, the entopeduncular nucleus, and the pars reticulata of the substantia nigra in the cat.
    Hontanilla B; de las Heras S; Giménez-Amaya JM
    Anat Rec; 1994 Jan; 238(1):114-24. PubMed ID: 7509579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.
    Saper CB
    J Comp Neurol; 1984 Jan; 222(3):313-42. PubMed ID: 6699210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase.
    Grofová I
    Brain Res; 1975 Jun; 91(2):286-91. PubMed ID: 51667
    [No Abstract]   [Full Text] [Related]  

  • 32. Subcortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimid.
    Groenewegen HJ; Becker NE; Lohman AH
    Neuroscience; 1980; 5(11):1903-16. PubMed ID: 6159559
    [No Abstract]   [Full Text] [Related]  

  • 33. A neuroanatomical analysis of the rostral striatopallidal pathway in the rat.
    Gandia JA; Giménez-Amaya JM
    J Hirnforsch; 1991; 32(1):79-88. PubMed ID: 1725786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry.
    Mesulam MM; Van Hoesen GW; Pandya DN; Geschwind N
    Brain Res; 1977 Nov; 136(3):393-414. PubMed ID: 411543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta).
    Aggleton JP; Burton MJ; Passingham RE
    Brain Res; 1980 May; 190(2):347-68. PubMed ID: 6768425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of striatal afferents from the mesencephalon in the cat.
    Szabo J
    Brain Res; 1980 Apr; 188(1):3-21. PubMed ID: 6989449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods.
    Parent A; Smith Y
    Brain Res; 1987 Dec; 436(2):296-310. PubMed ID: 3435830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interhemispheric organization of corticocaudate projections in the cat: a retrograde double-labelling study.
    Fisher RS; Shiota C; Levine MS; Hull CD; Buchwald NA
    Neurosci Lett; 1984 Aug; 48(3):369-73. PubMed ID: 6207472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Efferent connections of the caudate nucleus of the cat studied using retrograde axonal transport of horseradish peroxidase].
    Oleshko NN
    Neirofiziologiia; 1985; 17(4):509-17. PubMed ID: 4047246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence that projections from substantia innominata to zona incerta and mesencephalic locomotor region contribute to locomotor activity.
    Mogenson GJ; Swanson LW; Wu M
    Brain Res; 1985 May; 334(1):65-76. PubMed ID: 3995314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.