BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6203790)

  • 1. Phospholipid-sensitive Ca2+-dependent protein kinase: a major protein phosphorylation system.
    Kuo JF; Schatzman RC; Turner RS; Mazzei GJ
    Mol Cell Endocrinol; 1984 May; 35(2-3):65-73. PubMed ID: 6203790
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane phospholipid metabolism and signal transduction for protein phosphorylation.
    Takai Y; Kikkawa U; Kaibuchi K; Nishizuka Y
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 18():119-58. PubMed ID: 6093478
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of contractile activity in vascular smooth muscle by protein kinases.
    Silver PJ
    Rev Clin Basic Pharm; 1985; 5(3-4):341-95. PubMed ID: 3029813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+-dependent protein kinase.
    Turner RS; Chou CH; Kibler RF; Kuo JF
    J Neurochem; 1982 Nov; 39(5):1397-404. PubMed ID: 6181205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of a soluble cyclic nucleotide-independent Ca2+-calmodulin-sensitive protein kinase from rat brain.
    Alderson RF; Sze PY
    J Neurochem; 1986 Feb; 46(2):594-603. PubMed ID: 3001228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of skeletal-muscle troponin I and troponin T by phospholipid-sensitive Ca2+-dependent protein kinase and its inhibition by troponin C and tropomyosin.
    Mazzei GJ; Kuo JF
    Biochem J; 1984 Mar; 218(2):361-9. PubMed ID: 6712619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of contractile proteins in relation to muscle function.
    Stull JT
    Adv Cyclic Nucleotide Res; 1980; 13():39-93. PubMed ID: 6251706
    [No Abstract]   [Full Text] [Related]  

  • 8. Endogenous substrate proteins for Ca2+-calmodulin-dependent, Ca2+-phospholipid-dependent and cyclic AMP-dependent protein kinases in mouse pancreatic islets.
    Thams P; Capito K; Hedeskov CJ
    Biochem J; 1984 Jul; 221(1):247-53. PubMed ID: 6087803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of smooth muscle contractile proteins by calmodulin and cyclic AMP.
    Adelstein RS; Sellers JR; Conti MA; Pato MD; de Lanerolle P
    Fed Proc; 1982 Oct; 41(12):2873-8. PubMed ID: 6290274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine.
    Kuo JF; Andersson RG; Wise BC; Mackerlova L; Salomonsson I; Brackett NL; Katoh N; Shoji M; Wrenn RW
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7039-43. PubMed ID: 6938952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase.
    Katoh N; Wise BC; Kuo JF
    Biochem J; 1983 Jan; 209(1):189-95. PubMed ID: 6303300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition by melittin of phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases.
    Katoh N; Raynor RL; Wise BC; Schatzman RC; Turner RS; Helfman DM; Fain JN; Kuo JF
    Biochem J; 1982 Jan; 202(1):217-24. PubMed ID: 6896276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid turnover in hormone action.
    Nishizuka Y; Takai Y; Kishimoto A; Kikkawa U; Kaibuchi K
    Recent Prog Horm Res; 1984; 40():301-45. PubMed ID: 6091193
    [No Abstract]   [Full Text] [Related]  

  • 14. A multifunctional cyclic nucleotide- and Ca2+-independent protein kinase from rabbit skeletal muscle.
    Singh TJ; Akatsuka A; Huang KP; Sharma RK; Tam SW; Wang JH
    Biochem Biophys Res Commun; 1982 Jul; 107(2):676-83. PubMed ID: 6289838
    [No Abstract]   [Full Text] [Related]  

  • 15. Calcium, phospholipid turnover and transmembrane signalling.
    Nishizuka Y
    Philos Trans R Soc Lond B Biol Sci; 1983 Jul; 302(1108):101-12. PubMed ID: 6136998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium ion-dependent, calcium ion stimulated, endogenous protein kinase-catalyzed phosphorylation of basic proteins in myelin fraction of rat brain white matter.
    Petrali EH; Thiessen BJ; Sulakhe PV
    Int J Biochem; 1980; 11(1):21-36. PubMed ID: 6153368
    [No Abstract]   [Full Text] [Related]  

  • 17. [Effect of circulatory hypoxia on the activity of protein kinases in the subcellular fractions of rabbit brain].
    Sikorska M
    Neuropatol Pol; 1980; 18(1):27-39. PubMed ID: 6247674
    [No Abstract]   [Full Text] [Related]  

  • 18. Protein kinases.
    Roach PJ
    Methods Enzymol; 1984; 107():81-101. PubMed ID: 6094967
    [No Abstract]   [Full Text] [Related]  

  • 19. Ca2+ and phospholipid-dependent protein kinase activity and phosphorylation of endogenous proteins in bovine adrenal medulla.
    Wise BC; Costa E
    J Neurochem; 1985 Jul; 45(1):227-34. PubMed ID: 2987412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of calmodulin, troponin, and cyclic AMP in the regulation of glycogen metabolism in mammalian skeletal muscle.
    Cohen P
    Adv Cyclic Nucleotide Res; 1981; 14():345-59. PubMed ID: 6269387
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.