These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6203891)

  • 21. Glutamine, glutamate, and other possible regulators of alpha-ketoglutarate and malate uptake by synaptic terminals.
    Shank RP; Campbell GL
    J Neurochem; 1984 Apr; 42(4):1162-9. PubMed ID: 6142092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness.
    Fry J; Wood M; Poole PS
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1016-25. PubMed ID: 11497462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence of an active glucose uptake in Rhizobium meliloti.
    Theodoropoulos PA; Hornez JP; Courtois B; Derieux JC
    Ann Inst Pasteur Microbiol (1985); 1985; 136A(2):261-9. PubMed ID: 4039909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
    Eisbrenner G; Evans HJ
    J Bacteriol; 1982 Mar; 149(3):1005-12. PubMed ID: 6277845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water Deficit Elicits a Transcriptional Response of Genes Governing d-pinitol Biosynthesis in Soybean (
    Dumschott K; Dechorgnat J; Merchant A
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NAD-Malic Enzyme Affects Nitrogen Fixing Activity of Bradyrhizobium japonicum USDA 110 Bacteroids in Soybean Nodules.
    Dao TV; Nomura M; Hamaguchi R; Kato K; Itakura M; Minamisawa K; Sinsuwongwat S; Le HT; Kaneko T; Tabata S; Tajima S
    Microbes Environ; 2008; 23(3):215-20. PubMed ID: 21558711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of H2 oxidation activity from H2 uptake-negative mutants of Rhizobium japonicum bacteroids.
    Maier RJ; Mutaftschiev S
    J Biol Chem; 1982 Feb; 257(4):2092-6. PubMed ID: 7056758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids.
    Peterson JB; LaRue TA
    J Bacteriol; 1982 Sep; 151(3):1473-84. PubMed ID: 7202001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids.
    Stovall I; Cole M
    Plant Physiol; 1978 May; 61(5):787-90. PubMed ID: 16660386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti.
    Fougère F; Le Rudulier D
    J Gen Microbiol; 1990 Jan; 136(1):157-63. PubMed ID: 2351954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. delta-Aminolevulinate uptake by Rhizobium bacteroids and its limitation by the peribacteroid membrane in Legume nodules.
    Herrada G; Puppo A; Rigaud J
    Biochem Biophys Res Commun; 1992 May; 184(3):1324-30. PubMed ID: 1590795
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molybdate transport by Bradyrhizobium japonicum bacteroids.
    Maier RJ; Graham L
    J Bacteriol; 1988 Dec; 170(12):5613-9. PubMed ID: 3192511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
    Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN
    Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ineffective and non-nodulating mutant strains of Rhizobium japonicum.
    Maier RJ; Brill WJ
    J Bacteriol; 1976 Aug; 127(2):763-9. PubMed ID: 986388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules.
    Ou Yang LJ; Udvardi MK; Day DA
    Planta; 1990 Oct; 182(3):437-44. PubMed ID: 24197196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of protein additives on acetylene reduction (nitrogen fixation) by Rhizobium in the presence and absence of soybean cells.
    Anderson SJ; Phillips DA
    Plant Physiol; 1976 Jun; 57(6):890-3. PubMed ID: 16659592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supply of O2 regulates demand for O2 and uptake of malate by N2-fixing bacteroids from soybean nodules.
    Li Y; Green LS; Holtzapffel R; Day DA; Bergersen FJ
    Microbiology (Reading); 2001 Mar; 147(Pt 3):663-670. PubMed ID: 11238973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids.
    Streeter JG
    J Bacteriol; 1985 Oct; 164(1):78-84. PubMed ID: 4044531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dicarboxylate transport at the vacuolar membrane of the CAM plant Kalanchoë daigremontiana: sensitivity to protein-modifying and sulphydryl reagents.
    Bettey M; Smith JA
    Biochim Biophys Acta; 1993 Nov; 1152(2):270-9. PubMed ID: 8218327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.