These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6204)

  • 21. [Action of LSD and 5-methoxy-N,N-dimethyltryptamine on the high affinity uptake of [3H]-serotonin by isolated rat brain synaptosomes].
    Uebelhack R; Franke L; Seidel K
    Acta Biol Med Ger; 1978; 37(10):1611-4. PubMed ID: 752213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroendocrine regulation of cardiac activity in the snail Strophocheilus oblongus.
    Jaeger CP
    Comp Biochem Physiol; 1966 Feb; 17(2):409-15. PubMed ID: 5328961
    [No Abstract]   [Full Text] [Related]  

  • 23. Modulatory effect of serotonin on the acetylcholine sensitivity of identified neurons in the brain of Helix pomatia L.
    Yurchenko OP; S-Rózsa K
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(1):127-33. PubMed ID: 6141865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophysiological evidence for a dopaminergic action of LSD: depression of unit activity in the substantia nigra of the rat.
    Christoph GR; Kuhn DM; Jacobs BL
    Life Sci; 1977 Dec; 21(11):1585-96. PubMed ID: 202830
    [No Abstract]   [Full Text] [Related]  

  • 25. Microelectrophoysiological analysis of the correlation between the redox state and the type of effect of acetylcholine and/or 5-hydroxytryptamine.
    Puppi A; Kiss I
    Acta Physiol Acad Sci Hung; 1973; 44(2):133-43. PubMed ID: 4806137
    [No Abstract]   [Full Text] [Related]  

  • 26. Indolealkylamines and prolactin secretion. A structure-activity study in the central nervous system of the rat.
    Seeman G; Brown GM
    Neuropharmacology; 1985 Dec; 24(12):1195-200. PubMed ID: 3867833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The action of kainic acid and quisqualic acid on the glutamate receptors of three identifiable neurones from the brain of the snail, Helix aspersa.
    Walker RJ
    Comp Biochem Physiol C Comp Pharmacol; 1976; 55(1):61-7. PubMed ID: 8276
    [No Abstract]   [Full Text] [Related]  

  • 28. Mapping of nerve cells in the suboesophageal ganglia of Helix aspersa.
    Kerkut GA; Lambert JD; Gayton RJ; Loker JE; Walker RJ
    Comp Biochem Physiol A Comp Physiol; 1975 Jan; 50(1A):1-25. PubMed ID: 234036
    [No Abstract]   [Full Text] [Related]  

  • 29. The effect of optic tentacle removal on the transmitter content of the giant serotonin cell of helix aspersa.
    Osborne NN; Cottrell GA
    J Neurochem; 1972 Oct; 19(10):2363-8. PubMed ID: 4658794
    [No Abstract]   [Full Text] [Related]  

  • 30. The snail brain in pharmacological screening and research.
    Kerkut GA
    Gen Pharmacol; 1978; 9(2):79-80. PubMed ID: 26624
    [No Abstract]   [Full Text] [Related]  

  • 31. Bufo abuse. A toxic toad gets licked, boiled, teed up and tanned.
    Horgan J
    Sci Am; 1990 Aug; 263(2):26-7. PubMed ID: 2116032
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on amino acid receptors from neurones of Helix aspersa.
    Akhtar M; Azanza MJ; Kerkut GA; Piggott SM; Rascool CG; Walker RJ; Woodruff GN
    J Physiol; 1973 Jul; 232(2):62P-63P. PubMed ID: 4727094
    [No Abstract]   [Full Text] [Related]  

  • 33. Chemical sensitivity at different temperatures of the Br-type, bimodal pace-maker neurone in the CNS of the snail Helix pomatia l.
    Salánki J; Vadász I
    Acta Physiol Acad Sci Hung; 1973; 44(1):51-9. PubMed ID: 4155588
    [No Abstract]   [Full Text] [Related]  

  • 34. Neurobiology of cerebral integrative activity. Role of cAMP in providing for plastic properties of the electroexcitable membrane of neurons.
    D'yakonova TL
    Neurosci Behav Physiol; 1987; 17(6):493-500. PubMed ID: 2831469
    [No Abstract]   [Full Text] [Related]  

  • 35. The antagonist effect of alpha-amino-pimelic acid on glutamate-induced inhibitions of Helix neurones.
    Kerkut GA; Piggott SM; Walker RJ
    Brain Res; 1975 Mar; 86(1):139-43. PubMed ID: 1115990
    [No Abstract]   [Full Text] [Related]  

  • 36. Bufotenine reconsidered.
    McLeod WR; Sitaram BR
    Acta Psychiatr Scand; 1985 Nov; 72(5):447-50. PubMed ID: 4091027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Serotonin modulation of acetylcholine-induced currents in mollusk neurons as dependent on cyclic guanosine monophosphate].
    Diatlov VA
    Neirofiziologiia; 1989; 21(6):845-8. PubMed ID: 2483578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased responsiveness to 5-methoxy-N,N-dimethyltryptamine in mice on a high tryptophan diet.
    Singleton C; Marsden CA
    Neuropharmacology; 1979 Jun; 18(6):569-72. PubMed ID: 481710
    [No Abstract]   [Full Text] [Related]  

  • 39. A comparative investigation of actions of reserpine, 5-hydroxytryptamine and cinobufotenine.
    PECZENIK O; ZEI M
    Confin Neurol; 1961; 21():488-500. PubMed ID: 14484841
    [No Abstract]   [Full Text] [Related]  

  • 40. Interactive effects of serotonin and acetylcholine on neurite elongation.
    McCobb DP; Cohan CS; Connor JA; Kater SB
    Neuron; 1988 Jul; 1(5):377-85. PubMed ID: 3272172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.