These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6205028)

  • 21. Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro.
    Russell JB; Sniffen CJ
    J Dairy Sci; 1984 May; 67(5):987-94. PubMed ID: 6203949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amylolytic activity of selected species of ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1988 Mar; 54(3):772-6. PubMed ID: 2454075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of culture medium and growth conditions for production of L-arabinose isomerase and D-xylose isomerase by Lactobacillus bifermentans.
    Givry S; Duchiro F
    Mikrobiologiia; 2008; 77(3):324-30. PubMed ID: 18683648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adherence of ruminal Streptococcus bovis and Lactobacillus strains to primary and secondary cultures of rumen epithelium.
    Styriak I; Gálfi P; Kmet V
    Acta Microbiol Hung; 1992; 39(3-4):323-5. PubMed ID: 1343946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA.
    Wagner ID; Ahmed S; Zhao W; Zhang CL; Romanek CS; Rohde M; Wiegel J
    Int J Syst Evol Microbiol; 2009 Nov; 59(Pt 11):2685-91. PubMed ID: 19625440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth).
    Finster KW; Cockell CS; Voytek MA; Gronstal AL; Kjeldsen KU
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):515-26. PubMed ID: 19669589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and morphology of Streptococcus bovis and of mixed rumen bacteria in the presence of aflatoxin B1, in vitro.
    Mathur CF; Smith RC; Hawkins GE
    J Dairy Sci; 1976 Mar; 59(3):455-8. PubMed ID: 1262566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis.
    Cotta MA; Whitehead TR
    Appl Environ Microbiol; 1993 Jan; 59(1):189-96. PubMed ID: 7679887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The adherence of three Streptococcus bovis strains to cells of rumen epithelium primoculture under various conditions.
    Styriak I; Galfi P; Kmet V
    Arch Tierernahr; 1994; 46(4):357-65. PubMed ID: 7778984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporation of adenine and uracil into the nucleic acids of Streptococcus bovis.
    Smith RC; Mathur CF
    Can J Microbiol; 1973 May; 19(5):591-5. PubMed ID: 4736195
    [No Abstract]   [Full Text] [Related]  

  • 31. Differentiation of ruminal and human Streptococcus bovis strains by DNA homology and 16s rRNA probes.
    Nelms LF; Odelson DA; Whitehead TR; Hespell RB
    Curr Microbiol; 1995 Nov; 31(5):294-300. PubMed ID: 7580800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of protein by mixed cultures of rumen bacteria: identification of Streptococcus bovis as an actively proteolytic rumen bacterium.
    Russell JB; Bottje WG; Cotta MA
    J Anim Sci; 1981 Jul; 53(1):242-52. PubMed ID: 7319939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation between Streptococcus gallolyticus strains of human clinical and veterinary origins and Streptococcus bovis strains from the intestinal tracts of ruminants.
    Devriese LA; Vandamme P; Pot B; Vanrobaeys M; Kersters K; Haesebrouck F
    J Clin Microbiol; 1998 Dec; 36(12):3520-3. PubMed ID: 9817865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteolytic activities of the starch-fermenting ruminal bacterium, Streptococcus bovis.
    Griswold KE; White BA; Mackie RI
    Curr Microbiol; 1999 Oct; 39(4):180-6. PubMed ID: 10486052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis.
    Russell JB; Strobel HJ
    Arch Microbiol; 1990; 153(4):378-83. PubMed ID: 2140038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria.
    Therion JJ; Kistner A; Kornelius JH
    Appl Environ Microbiol; 1982 Aug; 44(2):428-34. PubMed ID: 7125656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phage resistance and altered growth habit in a strain of Streptococcus bovis.
    Klieve AV; Bauchop T
    FEMS Microbiol Lett; 1991 May; 64(2-3):155-9. PubMed ID: 1884977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deoxyribonuclease activity in Selenomonas ruminantium, Streptococcus bovis, and Bacteroides ovatus.
    Al-Khaldi SF; Durocher LL; Martin SA
    Curr Microbiol; 2000 Sep; 41(3):182-6. PubMed ID: 10915204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysogeny in Streptococcus bovis.
    Iverson WG; Millis NF
    Can J Microbiol; 1976 Jun; 22(6):853-7. PubMed ID: 945121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of carbohydrates on the antibacterial activity of patulin on Streptococcus bovis.
    Escoula L
    Can J Microbiol; 1982 Jul; 28(7):881-3. PubMed ID: 7172139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.