These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6205158)

  • 1. Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state.
    van Gunsteren WF; Berendsen HJ
    J Mol Biol; 1984 Jul; 176(4):559-64. PubMed ID: 6205158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein dynamics in solution and in a crystalline environment: a molecular dynamics study.
    van Gunsteren WF; Karplus M
    Biochemistry; 1982 May; 21(10):2259-74. PubMed ID: 6178423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of cyclosporin A: the crystal structure and dynamic modelling of a structure in apolar solution based on NMR data.
    Lautz J; Kessler H; Kaptein R; van Gunsteren WF
    J Comput Aided Mol Des; 1987 Oct; 1(3):219-41. PubMed ID: 3504965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of a high-quality nuclear magnetic resonance solution structure of the bovine pancreatic trypsin inhibitor and comparison with three crystal structures.
    Berndt KD; Güntert P; Orbons LP; Wüthrich K
    J Mol Biol; 1992 Oct; 227(3):757-75. PubMed ID: 1383552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational differences between alpha-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study.
    Koehler JE; Saenger W; van Gunsteren WF
    J Mol Biol; 1988 Sep; 203(1):241-50. PubMed ID: 3184189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of native protein. II. Analysis and nature of motion.
    Levitt M
    J Mol Biol; 1983 Aug; 168(3):621-57. PubMed ID: 6193282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics of native protein. I. Computer simulation of trajectories.
    Levitt M
    J Mol Biol; 1983 Aug; 168(3):595-617. PubMed ID: 6193280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and internal dynamics of the bovine pancreatic trypsin inhibitor in aqueous solution from long-time molecular dynamics simulations.
    Brunne RM; Berndt KD; Güntert P; Wüthrich K; van Gunsteren WF
    Proteins; 1995 Sep; 23(1):49-62. PubMed ID: 8539250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-level accuracy in simulations of large protein crystals.
    York DM; Wlodawer A; Pedersen LG; Darden TA
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8715-8. PubMed ID: 7521533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of conformations at crystal contacts in BPTI represent true low-energy structures: correspondence among lattice packing and molecular dynamics structures.
    Kossiakoff AA; Randal M; Guenot J; Eigenbrot C
    Proteins; 1992 Sep; 14(1):65-74. PubMed ID: 1384033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long-time molecular dynamics calculations in explicit water.
    Berndt KD; Güntert P; Wüthrich K
    Proteins; 1996 Mar; 24(3):304-13. PubMed ID: 8778777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of the dynamics of hydrated protein crystals and its comparison with x-ray data.
    van Gunsteren WF; Berendsen HJ; Hermans J; Hol WG; Postma JP
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4315-9. PubMed ID: 6576339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structure of crambin in solution, crystal and in the trajectories of molecular dynamics simulations].
    Abaturov LV; Nosova NG
    Biofizika; 2013; 58(3):425-44. PubMed ID: 24159811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hydrogen exchange rates for bovine pancreatic trypsin inhibitor in crystals and in solution.
    Gallagher W; Tao F; Woodward C
    Biochemistry; 1992 May; 31(19):4673-80. PubMed ID: 1374641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a Y35G mutant of bovine pancreatic trypsin inhibitor.
    Housset D; Kim KS; Fuchs J; Woodward C; Wlodawer A
    J Mol Biol; 1991 Aug; 220(3):757-70. PubMed ID: 1714504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution.
    Havel TF; Wüthrich K
    J Mol Biol; 1985 Mar; 182(2):281-94. PubMed ID: 2582141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin.
    Moore JM; Lepre CA; Gippert GP; Chazin WJ; Case DA; Wright PE
    J Mol Biol; 1991 Sep; 221(2):533-55. PubMed ID: 1920431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative molecular dynamics simulation studies of salmon and bovine trypsins in aqueous solution.
    Heimstad ES; Hansen LK; Smalås AO
    Protein Eng; 1995 Apr; 8(4):379-88. PubMed ID: 7567923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman studies of the conformation of the basic pancreatic trypsin inhibitor.
    Brunner H; Holz M
    Biochim Biophys Acta; 1975 Feb; 379(2):408-17. PubMed ID: 235313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.