These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 6205278)

  • 1. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex.
    Katz LC; Burkhalter A; Dreyer WJ
    Nature; 1984 Aug 9-15; 310(5977):498-500. PubMed ID: 6205278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green fluorescent latex microspheres: a new retrograde tracer.
    Katz LC; Iarovici DM
    Neuroscience; 1990; 34(2):511-20. PubMed ID: 2333155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of cortico-visual neurons projecting to the pons in the cat. A retrograde labelling study with rhodamine latex microspheres.
    Pérez-Samartín AL; Doñate-Oliver F
    Histol Histopathol; 1993 Jan; 8(1):167-71. PubMed ID: 8443428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of axonal branching using the retrograde transport of fluorescent latex microspheres.
    Cornwall J; Phillipson OT
    J Neurosci Methods; 1988 May; 24(1):1-9. PubMed ID: 3386298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of retrogradely transported fluorescent latex microspheres in rat lumbosacral ventral root axons following peripheral crush injury: a light and electron microscopic study.
    Persson HG; Gatzinsky KP
    Brain Res; 1993 Dec; 630(1-2):115-24. PubMed ID: 8118679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat.
    Martínez-García F; González-Hernández T; Martínez-Millán L
    J Comp Neurol; 1994 Dec; 350(3):439-51. PubMed ID: 7533799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets.
    Kasper EM; Larkman AU; Lübke J; Blakemore C
    J Comp Neurol; 1994 Jan; 339(4):459-74. PubMed ID: 8144741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping neuronal inputs to REM sleep induction sites with carbachol-fluorescent microspheres.
    Quattrochi JJ; Mamelak AN; Madison RD; Macklis JD; Hobson JA
    Science; 1989 Sep; 245(4921):984-6. PubMed ID: 2475910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent latex microspheres for retrograde tracing of neurons in mouse basal forebrain combined with immunocytochemistry: a methodical approach.
    Härtig W; Paulke BR; Brückner G
    Acta Histochem Suppl; 1992; 42():261-5. PubMed ID: 1584975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticocortical connections between area 21a and primary visual cortex in the cat.
    Morley JW; Yuan L; Vickery RM
    Neuroreport; 1997 Mar; 8(5):1263-6. PubMed ID: 9175126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topography of orientation centre connections in the primary visual cortex of the cat.
    Yousef T; Tóth E; Rausch M; Eysel UT; Kisvárday ZF
    Neuroreport; 2001 Jun; 12(8):1693-9. PubMed ID: 11409741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent latex microspheres as a retrograde tracer in the peripheral nervous system.
    Colin W; Donoff RB; Foote WE
    Brain Res; 1989 May; 486(2):334-9. PubMed ID: 2659138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size distribution of rhodamine-labelled microspheres retrogradely transported in cultured neurons.
    Holländer H; Egensperger R; Dirlich G
    J Neurosci Methods; 1989 Jul; 29(1):1-4. PubMed ID: 2474728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The postnatal development of clustered intrinsic connections in area 18 of the visual cortex in kittens.
    Price DJ
    Brain Res; 1986 Jan; 389(1-2):31-8. PubMed ID: 2418927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopic visualization of fluorescent microspheres used as a neuronal tracer.
    Egensperger R; Holländer H
    J Neurosci Methods; 1988 Apr; 23(3):181-6. PubMed ID: 3367655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of visual cortical projections to fetal tectal transplants in rats: a study using multiple retrograde tracers.
    Worthington DR; Harvey AR
    Brain Res; 1990 Dec; 536(1-2):153-62. PubMed ID: 2085743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex.
    Gilbert CD; Wiesel TN
    Nature; 1979 Jul; 280(5718):120-5. PubMed ID: 552600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal gold fluorescent microspheres: a new retrograde marker visualized by light and electron microscopy.
    Quattrochi JJ; Madison R; Sidman RL; Kljavin I
    Exp Neurol; 1987 Apr; 96(1):219-24. PubMed ID: 3556514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniformity, specificity and variability of corticocortical connectivity.
    Hilgetag CC; Grant S
    Philos Trans R Soc Lond B Biol Sci; 2000 Jan; 355(1393):7-20. PubMed ID: 10703041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunofluorescence in situ hybridization (IFISH) in neurones retrogradely labelled with rhodamine latex microspheres.
    Senatorov VV; Trudeau VL; Hu B
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):49-56. PubMed ID: 9385047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.