These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Carbon dioxide flow and exercise hyperpnea. Cause and effect. Wasserman K; Whipp BJ; Casaburi R; Beaver WL Am Rev Respir Dis; 1977 Jun; 115(6 Pt 2):225-37. PubMed ID: 326113 [No Abstract] [Full Text] [Related]
3. [Relation between arterial and end-tidal carbon dioxide pressure in artificial respiration, at rest and in various stages of exercise]. Stegemann J Pflugers Arch Gesamte Physiol Menschen Tiere; 1966; 292(2):140-50. PubMed ID: 5233580 [No Abstract] [Full Text] [Related]
5. [Mechanisms of exercise hyperpnea]. Chen ZB Sheng Li Ke Xue Jin Zhan; 1986 Jul; 17(3):216-20. PubMed ID: 3099384 [No Abstract] [Full Text] [Related]
6. The hyperpnea of exercise and chemical disequilibria. Filley GF; Hale RC; Kratochvil J; Olson DE Chest; 1978 Feb; 73(2 Suppl):267-70. PubMed ID: 23258 [No Abstract] [Full Text] [Related]
7. Ventilatory control characteristics of the exercise hyperpnea as discerned from dynamic forcing techniques. Casaburi R; Whipp BJ; Wasserman K; Stremel RW Chest; 1978 Feb; 73(2 Suppl):280-3. PubMed ID: 620606 [No Abstract] [Full Text] [Related]
8. Tenets of the exercise hyperpnea and their degree of corroboration. Whipp BJ Chest; 1978 Feb; 73(2 Suppl):274-7. PubMed ID: 23261 [No Abstract] [Full Text] [Related]
9. Blood gas disequilibria and exercise hyperpnea. Filley GF Trans Am Clin Climatol Assoc; 1976; 87():48-58. PubMed ID: 960424 [No Abstract] [Full Text] [Related]
10. Effect of exercise on human CO2-HCO3 minus kinetics. Slanger BH; Kusubov N; Winchell HS J Nucl Med; 1970 Dec; 11(12):716-8. PubMed ID: 5490400 [No Abstract] [Full Text] [Related]
11. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Band DM; Wolff CB; Ward J; Cochrane GM; Prior J Nature; 1980 Jan; 283(5742):84-5. PubMed ID: 7350529 [TBL] [Abstract][Full Text] [Related]
12. Prolonged breathing of a gas mixture high in O2 and low in CO2 at rest and during exercise. BRANDIS SA; PILOVITSKAYA VN Fed Proc; 1963; Suppl 22():86-90. PubMed ID: 14040818 [No Abstract] [Full Text] [Related]
13. Effect of stellate ganglion blockade on the hyperpnea of exercise. Eisele JH; Ritchie BC; Severinghaus JW J Appl Physiol; 1967 May; 22(5):966-9. PubMed ID: 4381653 [No Abstract] [Full Text] [Related]
15. Hyperpnea: the common stimulus for bronchospasm in asthma during exercise and voluntary isocapnic hyperpnea. Kivity S; Souhrada JF Respiration; 1980; 40(4):169-77. PubMed ID: 6784201 [No Abstract] [Full Text] [Related]
16. Pulmonary control systems in exercise. Dempsey JA; Vidruk EH; Mastenbrook SM Fed Proc; 1980 Apr; 39(5):1498-505. PubMed ID: 6767625 [TBL] [Abstract][Full Text] [Related]
17. [Current problems of chemical regulation of respiration]. Trzebski A Acta Physiol Pol; 1971; 22(Suppl 2):419-44. PubMed ID: 5114894 [No Abstract] [Full Text] [Related]
18. Alpha- and beta-adrenoceptor blockade does not affect ventilation during exercise in man. Fagard R; Reybrouck T; Lijnen P; Amery A; Moerman E; De Schaepdryver A Med Sci Sports Exerc; 1980; 12(5):375-9. PubMed ID: 6109223 [TBL] [Abstract][Full Text] [Related]
19. Chemical and nonchemical components of ventilation during hypercapnic exercise in man. Clark JM; Sinclair RD; Lenox JB J Appl Physiol Respir Environ Exerc Physiol; 1980 Jun; 48(6):1065-76. PubMed ID: 6769888 [TBL] [Abstract][Full Text] [Related]