BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6207022)

  • 1. Escherichia coli 5S RNA A and B conformers. Characterisation by enzymatic and chemical methods.
    Göringer HU; Szymkowiak C; Wagner R
    Eur J Biochem; 1984 Oct; 144(1):25-34. PubMed ID: 6207022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does 5S RNA from E. coli have a pseudoknotted structure?
    Göringer HU; Wagner R
    Nucleic Acids Res; 1986 Sep; 14(18):7473-85. PubMed ID: 2429262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligonucleotide directed mutagenesis of Escherichia coli 5S ribosomal RNA: construction of mutant and structural analysis.
    Göringer HU; Wagner R; Jacob WF; Dahlberg AE; Zwieb C
    Nucleic Acids Res; 1984 Sep; 12(18):6935-50. PubMed ID: 6091046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved procedure for the isolation of a double-strand-specific ribonuclease and its application to structural analysis of various 5S rRNAs and tRNAs.
    Digweed M; Pieler T; Kluwe D; Schuster L; Walker R; Erdmann VA
    Eur J Biochem; 1986 Jan; 154(1):31-9. PubMed ID: 2417836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structure of prokaryotic 5S ribosomal ribonucleic acids: a study with ribonucleases.
    Douthwaite S; Garrett RA
    Biochemistry; 1981 Dec; 20(25):7301-7. PubMed ID: 6274397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure of Tetrahymena thermophilia 5S ribosomal RNA as revealed by enzymatic digestion and microdensitometric analysis.
    Sneath B; Vary C; Pavlakis G; Vournakis J
    Nucleic Acids Res; 1986 Feb; 14(3):1365-78. PubMed ID: 3005972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25.
    Speek M; Lind A
    Nucleic Acids Res; 1982 Feb; 10(3):947-65. PubMed ID: 6278442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein.
    Mougel M; Philippe C; Ebel JP; Ehresmann B; Ehresmann C
    Nucleic Acids Res; 1988 Apr; 16(7):2825-39. PubMed ID: 2453025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling.
    Brunel C; Romby P; Westhof E; Ehresmann C; Ehresmann B
    J Mol Biol; 1991 Sep; 221(1):293-308. PubMed ID: 1717695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Implications for ribosomal assembly.
    Egebjerg J; Leffers H; Christensen A; Andersen H; Garrett RA
    J Mol Biol; 1987 Jul; 196(1):125-36. PubMed ID: 2443713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Comparison of the conformation of RNA from phage MS2 and 16S rRNA. Accessibility to nucleases S1 and SV specific to secondary structure and thermal stability].
    Grechko VV; Borisova OF; Sakharova NK; Timokhina GI; Kuznetsova NV
    Mol Biol (Mosk); 1987; 21(2):506-14. PubMed ID: 2439895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote.
    Douthwaite S; Christensen A; Garrett RA
    J Mol Biol; 1983 Sep; 169(1):249-79. PubMed ID: 6194304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structural model of eubacterial 5S RNA that has functional implications.
    Pieler T; Erdmann VA
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4599-603. PubMed ID: 6181508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA.
    Muralikrishna P; Wickstrom E
    Biochemistry; 1989 Sep; 28(19):7505-10. PubMed ID: 2514787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclease S1 analysis of eubacterial 5S rRNA secondary structure.
    MacDonell MT; Colwell RR
    J Mol Evol; 1985; 22(3):237-42. PubMed ID: 3001324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of transfer ribonucleic acid structures using cobra venom and S1 endonucleases.
    Auron PE; Weber LD; Rich A
    Biochemistry; 1982 Sep; 21(19):4700-6. PubMed ID: 6291588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical probing of conformation in large RNA molecules. Analysis of 16 S ribosomal RNA using diethylpyrocarbonate.
    Van Stolk BJ; Noller HF
    J Mol Biol; 1984 Nov; 180(1):151-77. PubMed ID: 6210372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA structural dynamics: pre-melting and melting transitions in E. coli 5S rRNA.
    Pieler T; Digweed M; Erdmann VA
    J Biomol Struct Dyn; 1985 Dec; 3(3):495-514. PubMed ID: 3917034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted structures of apolipoprotein II mRNA constrained by nuclease and dimethyl sulfate reactivity: stable secondary structures occur predominantly in local domains via intraexonic base pairing.
    Hwang SP; Eisenberg M; Binder R; Shelness GS; Williams DL
    J Biol Chem; 1989 May; 264(14):8410-8. PubMed ID: 2542276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5S RNA structure and interaction with transcription factor A. 1. Ribonuclease probe of the structure of 5S RNA from Xenopus laevis oocytes.
    Andersen J; Delihas N; Hanas JS; Wu CW
    Biochemistry; 1984 Nov; 23(24):5752-9. PubMed ID: 6084515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.