These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6208078)

  • 1. On the neurons with dendrites intermingling with the fibers of the human corpus callosum: a Golgi picture.
    Malobabić S; Bogdanović D; Drekić D
    Gegenbaurs Morphol Jahrb; 1984; 130(4):557-64. PubMed ID: 6208078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytoarchitecture of the dorsal cochlear nucleus in the 3-month- and 26-month-old C57BL/6 mouse: a Golgi impregnation study.
    Browner RH; Baruch A
    J Comp Neurol; 1982 Oct; 211(2):115-38. PubMed ID: 7174885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phrenic nucleus of th albino rat: a correlative HRP and Golgi study.
    Goshgarian HG; Rafols JA
    J Comp Neurol; 1981 Sep; 201(3):441-56. PubMed ID: 7276259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex.
    Simons DJ; Woolsey TA
    J Comp Neurol; 1984 Nov; 230(1):119-32. PubMed ID: 6512012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the spine density on apical dendrites of pyramidal neurons in the motor area of the cerebral cortex after callosotomy: a study by a modified Golgi-Cox method in the mouse.
    Shimada M; Negi T; Itano T; Hayasaki H; Konishi M; Watanabe M; Murakami TH
    Kaibogaku Zasshi; 1997 Dec; 72(6):545-52. PubMed ID: 9465558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology of the human corpus callosum: the shape of its mediosagittal section.
    Malobabić S; Bogdanović D; Teofilovski G
    Gegenbaurs Morphol Jahrb; 1987; 133(3):403-10. PubMed ID: 2442065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Golgi morphology of the neurons in frontal sections of human interthalamic adhesion.
    Malobabić S; Puskas L; Vujasković G
    Acta Anat (Basel); 1990; 139(3):234-8. PubMed ID: 2077804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient cellular structures in developing corpus callosum of the human brain.
    Jovanov-Milosević N; Benjak V; Kostović I
    Coll Antropol; 2006 Jun; 30(2):375-81. PubMed ID: 16848154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neurons in the corpus callosum of rats: expression of Cav2.2 and their connection].
    Zhang JS; Liu Y; Xu JH; Yang PB; Xiao XL; Chen XL; Tian YM; Zhang JF
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2008 Feb; 33(2):99-102. PubMed ID: 18326902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures.
    Yoshimura R; Ito K; Endo Y
    Neurosci Lett; 2009 Feb; 450(3):262-5. PubMed ID: 19103259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessory oculomotor nuclei of man. III. The nuclear complex of the posterior commissure: a Nissl and Golgi study.
    Bianchi R; Gioia M
    Acta Anat (Basel); 1993; 146(1):53-61. PubMed ID: 8434507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of myelinated axons of corpus callosum in the human brain.
    Sargon MF; Celik HH; Aksit MD; Karaağaoğlu E
    Int J Neurosci; 2007 Jun; 117(6):749-55. PubMed ID: 17454242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and laminar distribution of nonpyramidal neurons in the auditory cortex of the rabbit.
    McMullen NT; Glaser EM
    J Comp Neurol; 1982 Jun; 208(1):85-106. PubMed ID: 7119153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics.
    Lund JS; Lewis DA
    J Comp Neurol; 1993 Feb; 328(2):282-312. PubMed ID: 7678612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices.
    Meyer BU; Röricht S; Woiciechowsky C
    Ann Neurol; 1998 Mar; 43(3):360-9. PubMed ID: 9506553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus.
    Saper CB
    J Comp Neurol; 1984 Jan; 222(3):313-42. PubMed ID: 6699210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar-dependent dendritic spine alterations in the motor cortex of adult rats following callosal transection and forced forelimb use.
    Adkins DL; Bury SD; Jones TA
    Neurobiol Learn Mem; 2002 Jul; 78(1):35-52. PubMed ID: 12071666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex.
    Czeiger D; White EL
    J Comp Neurol; 1993 Apr; 330(4):502-13. PubMed ID: 8320340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat.
    Martínez-García F; González-Hernández T; Martínez-Millán L
    J Comp Neurol; 1994 Dec; 350(3):439-51. PubMed ID: 7533799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectional distinction between callosal and subcortically projecting cortical neurons is determined prior to axon extension.
    Koester SE; O'Leary DD
    Dev Biol; 1993 Nov; 160(1):1-14. PubMed ID: 8224528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.