These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 6208532)

  • 1. A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent.
    Vaughn JC; Sperbeck SJ; Ramsey WJ; Lawrence CB
    Nucleic Acids Res; 1984 Oct; 12(19):7479-502. PubMed ID: 6208532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs.
    Branlant C; Krol A; Machatt MA; Pouyet J; Ebel JP; Edwards K; Kössel H
    Nucleic Acids Res; 1981 Sep; 9(17):4303-24. PubMed ID: 6170936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid.
    Walker TA; Johnson KD; Olsen GJ; Peters MA; Pace NR
    Biochemistry; 1982 May; 21(10):2320-9. PubMed ID: 7093191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and secondary structure of mouse 28S rRNA 5'terminal domain. Organisation of the 5.8S-28S rRNA complex.
    Michot B; Bachellerie JP; Raynal F
    Nucleic Acids Res; 1982 Sep; 10(17):5273-83. PubMed ID: 6292836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary and secondary structures of Tetrahymena and aphid 5.8S rRNAs: structural features of 5.8S rRNA which interacts with the 28S rRNA containing the hidden break.
    Fujiwara H; Ishikawa H
    Nucleic Acids Res; 1982 Sep; 10(17):5173-82. PubMed ID: 6815618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ribosome dissociation on the structure of the ribosome-associated 5.8S RNA.
    Lo AC; Liu WY; Culham DE; Nazar RN
    Biochem Cell Biol; 1987 Jun; 65(6):536-42. PubMed ID: 3322327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3'-terminal region of bacterial 23S ribosomal RNA: structure and homology with the 3'-terminal region of eukaryotic 28S rRNA and with chloroplast 4.5s rRNA.
    Machatt MA; Ebel JP; Branlant C
    Nucleic Acids Res; 1981 Apr; 9(7):1533-49. PubMed ID: 6164989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the conformational changes in 5.8S, 18S and 28S rRNA upon association of derived subunits into complete 80S ribosomes.
    Holmberg L; Melander Y; Nygård O
    Nucleic Acids Res; 1994 Jul; 22(14):2776-83. PubMed ID: 8052533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.
    Jacq B
    Nucleic Acids Res; 1981 Jun; 9(12):2913-32. PubMed ID: 7024907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence of Dictyostelium discoideum 5.8S ribosomal ribonucleic acid: evolutionary and secondary structural implications.
    Olsen GJ; Sogin ML
    Biochemistry; 1982 May; 21(10):2335-43. PubMed ID: 7093192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ribosome: still a knotty problem.
    Nierhaus KH
    Nature; 1978 Aug; 274(5673):743-4. PubMed ID: 683315
    [No Abstract]   [Full Text] [Related]  

  • 12. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.
    Clark CG; Tague BW; Ware VC; Gerbi SA
    Nucleic Acids Res; 1984 Aug; 12(15):6197-220. PubMed ID: 6147812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development.
    Locati MD; Pagano JFB; Girard G; Ensink WA; van Olst M; van Leeuwen S; Nehrdich U; Spaink HP; Rauwerda H; Jonker MJ; Dekker RJ; Breit TM
    RNA; 2017 Aug; 23(8):1188-1199. PubMed ID: 28500251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of point mutations on 5.8S ribosomal ribonucleic acid secondary structure and the 5.8S--28S ribosomal ribonucleic acid junction.
    Sitz TO; Banerjee N; Nazar RN
    Biochemistry; 1981 Jul; 20(14):4029-33. PubMed ID: 6793061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ.
    Holmberg L; Melander Y; Nygård O
    Nucleic Acids Res; 1994 Apr; 22(8):1374-82. PubMed ID: 8190627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequences of Acanthamoeba castellanii 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analyses.
    MacKay RM; Doolittle WF
    Nucleic Acids Res; 1981 Jul; 9(14):3321-34. PubMed ID: 7279665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal structural features of prokaryotic and eukaryotic ribosomal 5S RNA derived from comparative analysis of their sequences.
    Böhm S; Fabian H; Welfle H
    Acta Biol Med Ger; 1982; 41(1):1-16. PubMed ID: 7113541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequences of the 5.8S rRNAs of a mollusc and a porifer, and considerations regarding the secondary structure of 5.8S rRNA and its interaction with 28S rRNA.
    Ursi D; Vandenberghe A; De Wachter R
    Nucleic Acids Res; 1983 Nov; 11(22):8111-20. PubMed ID: 6647038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ribosomal 5.8S RNA: eukaryotic adaptation or processing variant?
    Nazar RN
    Can J Biochem Cell Biol; 1984 Jun; 62(6):311-20. PubMed ID: 6380683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eukaryotic ribosomes that lack a 5.8S RNA.
    Vossbrinck CR; Woese CR
    Nature; 1986 Mar 20-26; 320(6059):287-8. PubMed ID: 3083262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.