These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 6208870)
1. Metabolic reorganization in the silk gland of eri-silkworm, Philosamia ricini, during thermal acclimation. Singh SP; Singh OP Arch Int Physiol Biochim; 1984 Aug; 92(2):81-4. PubMed ID: 6208870 [TBL] [Abstract][Full Text] [Related]
2. Changes in the transaminase activities in the middle and posterior silk-gland tissues of eri-silkworm, Philosamia ricini, in relation to spinning process. Singh SP; Singh MK; Singh GB Acta Physiol Hung; 1985; 66(1):61-4. PubMed ID: 4036645 [TBL] [Abstract][Full Text] [Related]
3. Fibroin silk proteins from the nonmulberry silkworm Philosamia ricini are biochemically and immunochemically distinct from those of the mulberry silkworm Bombyx mori. Ahmad R; Kamra A; Hasnain SE DNA Cell Biol; 2004 Mar; 23(3):149-54. PubMed ID: 15068584 [TBL] [Abstract][Full Text] [Related]
4. Tissue specific glucose-trehalose variations during spinning in the eri-silkworm, (Philosamia ricini). Singh SP; Singh J Arch Int Physiol Biochim; 1978 Aug; 86(3):557-61. PubMed ID: 83822 [TBL] [Abstract][Full Text] [Related]
5. Tissue specific glucose-trehalose variations prior to spinning in the eri-silkworm, Philosamia ricini. Singh SP; Singh J; Singh OP Arch Int Physiol Biochim; 1978 Dec; 86(5):1117-24. PubMed ID: 87163 [TBL] [Abstract][Full Text] [Related]
6. DNA polymerase alpha-primase complex from the silk glands of the non-mulberry silkworm Philosamia ricini. Niranjanakumari S; Gopinathan KP Biochem J; 1994 Mar; 298 Pt 3(Pt 3):529-35. PubMed ID: 8141764 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of silk fiber with and without sericin component: a comparison between Bombyx mori and Philosamia ricini silks. Prasong S; Yaowalak S; Wilaiwan S Pak J Biol Sci; 2009 Jun; 12(11):872-6. PubMed ID: 19803122 [TBL] [Abstract][Full Text] [Related]
8. The nucleotide sequence of 5.8S rRNA from the posterior silk gland of the silkworm Philosamia cynthia ricini. Feng YX; Krupp G; Gross HJ Nucleic Acids Res; 1982 Oct; 10(20):6383-7. PubMed ID: 7177850 [TBL] [Abstract][Full Text] [Related]
9. Three vital RNA functions and interactions in the process of silk gland apoptosis in silkworm Bombyx mori. Chen RT; Xiao Y; Liu Z; Li LL; Lu Y; Jiao P; Miao YG Arch Insect Biochem Physiol; 2019 Jan; 100(1):e21511. PubMed ID: 30417456 [TBL] [Abstract][Full Text] [Related]
10. Simulation of flow in the silk gland. Breslauer DN; Lee LP; Muller SJ Biomacromolecules; 2009 Jan; 10(1):49-57. PubMed ID: 19053289 [TBL] [Abstract][Full Text] [Related]
11. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori. Xin HH; Zhang DP; Chen RT; Cai ZZ; Lu Y; Liang S; Miao YG Arch Insect Biochem Physiol; 2015 Oct; 90(2):59-69. PubMed ID: 25917878 [TBL] [Abstract][Full Text] [Related]
13. Gene expression analysis in the larval silk gland of the eri silkworm Samia ricini. Tsubota T; Yamamoto K; Mita K; Sezutsu H Insect Sci; 2016 Dec; 23(6):791-804. PubMed ID: 26178074 [TBL] [Abstract][Full Text] [Related]
14. Differentiation of the silk gland. A model system for the study of differential gene action. Suzuki Y Results Probl Cell Differ; 1977; 8():1-44. PubMed ID: 335465 [No Abstract] [Full Text] [Related]
15. Larval Exposure to Chlorpyrifos Affects Nutritional Physiology and Induces Genotoxicity in Silkworm Kalita MK; Haloi K; Devi D Front Physiol; 2016; 7():535. PubMed ID: 27895594 [TBL] [Abstract][Full Text] [Related]
16. Shotgun proteomic analysis of the Bombyx mori anterior silk gland: An insight into the biosynthetic fiber spinning process. Yi Q; Zhao P; Wang X; Zou Y; Zhong X; Wang C; Xiang Z; Xia QY Proteomics; 2013 Sep; 13(17):2657-63. PubMed ID: 23828816 [TBL] [Abstract][Full Text] [Related]
17. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. Tabunoki H; Higurashi S; Ninagi O; Fujii H; Banno Y; Nozaki M; Kitajima M; Miura N; Atsumi S; Tsuchida K; Maekawa H; Sato R FEBS Lett; 2004 Jun; 567(2-3):175-8. PubMed ID: 15178318 [TBL] [Abstract][Full Text] [Related]
18. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini. Pal S; Kundu J; Talukdar S; Thomas T; Kundu SC Macromol Biosci; 2013 Aug; 13(8):1020-35. PubMed ID: 23733347 [TBL] [Abstract][Full Text] [Related]
19. Alkaline phosphomonesterase activity in spinning gland cells of the moth pericallia ricini during sequential stages of growth and atrophy. Vishnoi DN; Narain S Z Mikrosk Anat Forsch; 1980; 94(3):504-10. PubMed ID: 7445668 [TBL] [Abstract][Full Text] [Related]
20. Dataset on the synthesis and physicochemical characterization of blank and curcumin encapsulated sericin nanoparticles obtained from Bhuyan D; Greene GW; Das RK Data Brief; 2019 Oct; 26():104359. PubMed ID: 31508467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]