These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 6209158)
21. Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. McQuade R; Sharp T J Neurochem; 1997 Aug; 69(2):791-6. PubMed ID: 9231740 [TBL] [Abstract][Full Text] [Related]
22. Inhibitory influence of GABA on central serotonergic transmission. Raphé nuclei as the neuroanatomical site of the GABAergic inhibition of cerebral serotonergic neurons. Nishikawa T; Scatton B Brain Res; 1985 Apr; 331(1):91-103. PubMed ID: 2985201 [TBL] [Abstract][Full Text] [Related]
23. Short-range differential pulse voltammetry for fast, selective analysis of basal levels of cerebral compounds in vivo. Crespi F; Möbius C; Neudeck A J Neurosci Methods; 1993 Nov; 50(2):225-35. PubMed ID: 7509018 [TBL] [Abstract][Full Text] [Related]
24. Inhibitory influence of GABA on central serotonergic transmission. Involvement of the habenulo-raphé pathways in the GABAergic inhibition of ascending cerebral serotonergic neurons. Nishikawa T; Scatton B Brain Res; 1985 Apr; 331(1):81-90. PubMed ID: 2985200 [TBL] [Abstract][Full Text] [Related]
25. [Voltammetric detection of extracellular 5-hydroxyindole compounds at the level of cell bodies and the terminals of the raphe system: variations during the wake-sleep cycle in the rat in chronic experiments]. Cespuglio R; Faradji H; Jouvet M C R Seances Acad Sci III; 1983; 296(13):611-6. PubMed ID: 6193846 [TBL] [Abstract][Full Text] [Related]
26. Determination of the source of 5-hydroxytryptaminergic neuronal projections to the neural and intermediate lobes of the rat pituitary gland through the use of electrical stimulation and lesioning experiments. Shannon NJ; Moore KE Brain Res; 1987 Jul; 416(2):322-30. PubMed ID: 3497689 [TBL] [Abstract][Full Text] [Related]
27. Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Rivot JP; Chiang CY; Besson JM Brain Res; 1982 Apr; 238(1):117-26. PubMed ID: 6177378 [TBL] [Abstract][Full Text] [Related]
28. Effect of lesions of raphe nuclei on the activity of catecholaminergic and serotonergic neurones in various brain regions of the rat in vivo. Rommelspacher H; Strauss S J Neural Transm; 1980; 49(1-2):51-62. PubMed ID: 6160202 [TBL] [Abstract][Full Text] [Related]
29. Voltammetric detection of the release of 5-hydroxyindole compounds throughout the sleep-waking cycle of the rat. Cespuglio R; Sarda N; Gharib A; Chastrette N; Houdouin F; Rampin C; Jouvet M Exp Brain Res; 1990; 80(1):121-8. PubMed ID: 1694135 [TBL] [Abstract][Full Text] [Related]
30. Differential activation of the 5-hydroxytryptamine-containing neurons of the midbrain raphe of the rat in response to randomly presented inescapable sound. Dilts RP; Boadle-Biber MC Neurosci Lett; 1995 Oct; 199(1):78-80. PubMed ID: 8584232 [TBL] [Abstract][Full Text] [Related]
31. Differential pulse voltammetric determination of 5-hydroxyindoles in four raphe nuclei of chronic freely moving rats simultaneously recorded by polygraphic technique: physiological changes with vigilance states. Crespi F; Jouvet M Brain Res; 1984 May; 299(1):113-9. PubMed ID: 6326958 [TBL] [Abstract][Full Text] [Related]
32. Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. De Deurwaerdère P; Stinus L; Spampinato U J Neurosci; 1998 Aug; 18(16):6528-38. PubMed ID: 9698340 [TBL] [Abstract][Full Text] [Related]
33. [Opposite variations of extracellular concentrations of 5-hydroxyindoleacetic acid (5-HIAA) measured by voltammetry of axonal terminals and cell bodies of the dorsal raphe nucleus through the sleep-wake cycle]. Cespuglio R; Chastrette N; Jouvet M C R Acad Sci III; 1988; 307(18):817-23. PubMed ID: 2464425 [TBL] [Abstract][Full Text] [Related]
34. Melatonin effects on serotonin synthesis and metabolism in the striatum, nucleus accumbens, and dorsal and median raphe nuclei of rats. Míguez JM; Martín FJ; Aldegunde M Neurochem Res; 1997 Jan; 22(1):87-92. PubMed ID: 9021768 [TBL] [Abstract][Full Text] [Related]
35. Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetry and intracerebral dialysis. Sharp T; Maidment NT; Brazell MP; Zetterström T; Ungerstedt U; Bennett GW; Marsden CA Neuroscience; 1984 Aug; 12(4):1213-21. PubMed ID: 6207457 [TBL] [Abstract][Full Text] [Related]
36. Deficits in the mid-brain raphe nuclei and striatum of the AS/AGU rat, a protein kinase C-gamma mutant. Al-Fayez M; Russell D; Wayne Davies R; Shiels PG; Baker PJ; Payne AP Eur J Neurosci; 2005 Dec; 22(11):2792-8. PubMed ID: 16324113 [TBL] [Abstract][Full Text] [Related]
37. Time-course variations induced by pargyline on the 5-hydroxyindole compounds measured in the nucleus raphe dorsalis and in blood: a voltammetric and HPLC approach in the rat. Houdouin F; Cespuglio R; Gharib A; Sarda N; Jouvet M Neurosci Lett; 1990 Sep; 117(1-2):218-23. PubMed ID: 1705315 [TBL] [Abstract][Full Text] [Related]
38. Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferences. De Simoni MG; Dal Toso G; Fodritto F; Sokola A; Algeri S Brain Res; 1987 May; 411(1):81-8. PubMed ID: 2440514 [TBL] [Abstract][Full Text] [Related]
39. Motor effects of serotonin in the central nervous system. Gerson SC; Baldessarini RJ Life Sci; 1980 Oct; 27(16):1435-51. PubMed ID: 6160367 [No Abstract] [Full Text] [Related]
40. In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Crespi F; Garratt JC; Sleight AJ; Marsden CA Neuroscience; 1990; 35(1):139-44. PubMed ID: 1694283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]