BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6209427)

  • 1. Growth stimulating activity produced by human bladder cancer cells.
    Messing EM; Bubbers JE; Dekernion JB; Fahey JL
    J Urol; 1984 Dec; 132(6):1230-4. PubMed ID: 6209427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of insulinlike growth factor I binding to human fibroblast monolayer cultures by insulinlike growth factor carrier proteins released to the incubation media.
    De Vroede MA; Tseng LY; Katsoyannis PG; Nissley SP; Rechler MM
    J Clin Invest; 1986 Feb; 77(2):602-13. PubMed ID: 2418066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oncoprotein changes in the flat lesions with atypia and invasive neoplasms of the urinary bladder.
    Kee KH; Lee MJ; Ro JY
    Oncol Rep; 2001; 8(3):579-83. PubMed ID: 11295084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of insulin-like growth factors I and II and multiplication-stimulating activity with receptors and serum carrier proteins.
    Rechler MM; Zapf J; Nissley SP; Froesch ER; Moses AC; Podskalny JM; Schilling EE; Humbel RE
    Endocrinology; 1980 Nov; 107(5):1451-9. PubMed ID: 6159199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid molecules containing the B-domain of insulin-like growth factor I are recognized by carrier proteins of the growth factor.
    De Vroede MA; Rechler MM; Nissley SP; Joshi S; Burke GT; Katsoyannis PG
    Proc Natl Acad Sci U S A; 1985 May; 82(9):3010-4. PubMed ID: 2581261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal growth factor receptor-mediated autocrine and paracrine stimulation of human transitional cell carcinoma.
    Gleave ME; Hsieh JT; Wu HC; Hong SJ; Zhau HE; Guthrie PD; Chung LW
    Cancer Res; 1993 Nov; 53(21):5300-7. PubMed ID: 8221665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors.
    Todaro GJ; Fryling C; De Larco JE
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5258-62. PubMed ID: 6254071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factors in bladder cancer.
    Liebert M
    World J Urol; 1995; 13(6):349-55. PubMed ID: 9116754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration that a human hepatoma cell line produces a specific insulin-like growth factor carrier protein.
    Moses AC; Freinkel AJ; Knowles BB; Aden DP
    J Clin Endocrinol Metab; 1983 May; 56(5):1003-8. PubMed ID: 6187761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nuclear form of the heparin-binding epidermal growth factor-like growth factor precursor is a feature of aggressive transitional cell carcinoma.
    Adam RM; Danciu T; McLellan DL; Borer JG; Lin J; Zurakowski D; Weinstein MH; Rajjayabun PH; Mellon JK; Freeman MR
    Cancer Res; 2003 Jan; 63(2):484-90. PubMed ID: 12543806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between the receptors for platelet-derived growth factor and epidermal growth factor.
    Bowen-Pope DF; Dicorleto PE; Ross R
    J Cell Biol; 1983 Mar; 96(3):679-83. PubMed ID: 6300138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparin-binding epidermal growth factor-like growth factor isoforms and epidermal growth factor receptor/ErbB1 expression in bladder cancer and their relation to clinical outcome.
    Kramer C; Klasmeyer K; Bojar H; Schulz WA; Ackermann R; Grimm MO
    Cancer; 2007 May; 109(10):2016-24. PubMed ID: 17394193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of insulin-like growth factors and binding protein activity into serum-free medium of cultured human fibroblasts.
    Adams SO; Kapadia M; Mills B; Daughaday WH
    Endocrinology; 1984 Aug; 115(2):520-6. PubMed ID: 6378592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation of a human embryonal carcinoma-derived cell line in serum-free medium: inter-relationship between growth factor requirements and membrane receptor expression.
    Engström W; Rees AR; Heath JK
    J Cell Sci; 1985 Feb; 73():361-73. PubMed ID: 2991306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical implications of the expression of epidermal growth factor receptors in human transitional cell carcinoma.
    Messing EM
    Cancer Res; 1990 Apr; 50(8):2530-7. PubMed ID: 1690599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours.
    Neal DE; Marsh C; Bennett MK; Abel PD; Hall RR; Sainsbury JR; Harris AL
    Lancet; 1985 Feb; 1(8425):366-8. PubMed ID: 2857420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocrine regulation of human tumor cell proliferation by insulin-like growth factor II: an in-vitro model.
    Thompson MA; Cox AJ; Whitehead RH; Jonas HA
    Endocrinology; 1990 Jun; 126(6):3033-42. PubMed ID: 1693565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of insulin-like growth factor II (IGF-II) and different forms of IGF-binding proteins by HT-29 human colon carcinoma cell line.
    Culouscou JM; Remacle-Bonnet M; Garrouste F; Fantini J; Marvaldi J; Pommier G
    J Cell Physiol; 1990 Jun; 143(3):405-15. PubMed ID: 1694180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of epidermal growth factor receptors on 3T3 cells by platelet-derived growth factor.
    Wrann M; Fox CF; Ross R
    Science; 1980 Dec; 210(4476):1363-5. PubMed ID: 6254158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mouse tumor-derived osteolytic factor stimulates bone resorption by a mechanism involving local prostaglandins production in bone.
    Lau KH; Lee MY; Linkhart TA; Mohan S; Vermeiden J; Liu CC; Baylink DJ
    Biochim Biophys Acta; 1985 May; 840(1):56-68. PubMed ID: 2986710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.