These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6211100)

  • 1. Type IIB to IIA fiber transformation in intermittently stimulated rabbit muscles.
    Mabuchi K; Szvetko D; Pintér K; Sréter FA
    Am J Physiol; 1982 May; 242(5):C373-81. PubMed ID: 6211100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers.
    Sweeney HL; Kushmerick MJ; Mabuchi K; Gergely J; Sréter FA
    Am J Physiol; 1986 Sep; 251(3 Pt 1):C431-4. PubMed ID: 3019147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit.
    Pette D; Müller W; Leisner E; Vrbová G
    Pflugers Arch; 1976 Jul; 364(2):103-12. PubMed ID: 134352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of rabbit masseter muscle fibers.
    Mabuchi K; Pinter K; Mabuchi Y; Sreter F; Gergely J
    Muscle Nerve; 1984; 7(6):431-8. PubMed ID: 6242312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of myosin isoenzymes from slow-tonic and fast-twitch fibers of frog muscle.
    Pliszka B; Strzelecka-Gołaszewska H; Pantaloni C; d'Albis A
    Eur J Cell Biol; 1981 Aug; 25(1):144-9. PubMed ID: 6456909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit.
    Hämäläinen N; Pette D
    J Histochem Cytochem; 1993 May; 41(5):733-43. PubMed ID: 8468455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shortening velocity and ATPase activity of rat skeletal muscle fibers: effects of endurance exercise training.
    Schluter JM; Fitts RH
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1699-1713. PubMed ID: 8023900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles. A single-fiber study.
    Termin A; Staron RS; Pette D
    Eur J Biochem; 1989 Dec; 186(3):749-54. PubMed ID: 2606114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in intracellular ionized Ca concentration associated with muscle fiber type transformation.
    Sreter FA; Lopez JR; Alamo L; Mabuchi K; Gergely J
    Am J Physiol; 1987 Aug; 253(2 Pt 1):C296-300. PubMed ID: 2956887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in skeletal-muscle myosin isoenzymes with hypertrophy and exercise.
    Gregory P; Low RB; Stirewalt WS
    Biochem J; 1986 Aug; 238(1):55-63. PubMed ID: 2948496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin polymorphism in single fibers of chronically stimulated rabbit fast-twitch muscle.
    Staron RS; Gohlsch B; Pette D
    Pflugers Arch; 1987 May; 408(5):444-50. PubMed ID: 3601635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined histochemical and immunohistochemical study on the dynamics of fast-to-slow fiber transformation in chronically stimulated rabbit muscle.
    Maier A; Gorza L; Schiaffino S; Pette D
    Cell Tissue Res; 1988 Oct; 254(1):59-68. PubMed ID: 3197085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cross-reinnervation on physiological parameters and on properties of myosin and sarcoplasmic reticulum of fast and slow muscles of the rabbit.
    Sréter FA; Luff AR; Gergely J
    J Gen Physiol; 1975 Dec; 66(6):811-21. PubMed ID: 461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin light chain patterns of individual fast and slow-twitch fibres of rabbit muscles.
    Pette D; Schnez U
    Histochemistry; 1977 Oct; 54(2):97-107. PubMed ID: 144718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers.
    Sweeney HL; Kushmerick MJ; Mabuchi K; Sréter FA; Gergely J
    J Biol Chem; 1988 Jun; 263(18):9034-9. PubMed ID: 3379059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin isozyme distribution in rodent hindlimb skeletal muscle.
    Thomason DB; Baldwin KM; Herrick RE
    J Appl Physiol (1985); 1986 Jun; 60(6):1923-31. PubMed ID: 2941406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and biochemical correlates of skeletal muscle contractility in the cat. II. Physiological and biochemical studies.
    Van Winkle WB; Entman ML; Bornet EP; Schwartz A
    J Cell Physiol; 1978 Oct; 97(1):121-35. PubMed ID: 152319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin transitions in chronic stimulation do not involve embryonic isozymes.
    Hoffman RK; Gambke B; Stephenson LW; Rubinstein NA
    Muscle Nerve; 1985; 8(9):796-805. PubMed ID: 4079958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation.
    Pette D; Tyler KR
    J Physiol; 1983 May; 338():1-9. PubMed ID: 6224003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of a fast-oxidative phenotype by chronic muscle stimulation: mechanical and biochemical studies.
    Jarvis JC; Sutherland H; Mayne CN; Gilroy SJ; Salmons S
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C306-12. PubMed ID: 8772458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.