These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 6211171)
1. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
2. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
4. Azide as a probe of co-operative interactions in the mitochondrial F1-ATPase. Harris DA Biochim Biophys Acta; 1989 May; 974(2):156-62. PubMed ID: 2523739 [TBL] [Abstract][Full Text] [Related]
5. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase. Beharry S; Bragg PD Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850 [TBL] [Abstract][Full Text] [Related]
6. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725 [TBL] [Abstract][Full Text] [Related]
7. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition. Bulygin VV; Vinogradov AD Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory effect of NaN3 on the F0F1 ATPase of submitochondrial particles as related to nucleotide binding. Muneyuki E; Makino M; Kamata H; Kagawa Y; Yoshida M; Hirata H Biochim Biophys Acta; 1993 Aug; 1144(1):62-8. PubMed ID: 8347662 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
10. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. Mueller DM; Indyk V; McGill L Eur J Biochem; 1994 Jun; 222(3):991-9. PubMed ID: 8026510 [TBL] [Abstract][Full Text] [Related]
11. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide. Vasilyeva E; Forgac M J Biol Chem; 1998 Sep; 273(37):23823-9. PubMed ID: 9726993 [TBL] [Abstract][Full Text] [Related]
12. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084 [TBL] [Abstract][Full Text] [Related]
13. The interaction of MgADP with H+ -ATPase in rat liver mitochondria. Chernyak BV; Dukhovich VF; Khodjaev EYu FEBS Lett; 1988 Mar; 230(1-2):159-62. PubMed ID: 2895017 [TBL] [Abstract][Full Text] [Related]
14. The effect of inorganic pyrophosphate on the activity and Pi-binding properties of mitochondrial F1-ATPase. Kalashnikova TYw ; Milgrom YM; Murataliev MB Eur J Biochem; 1988 Oct; 177(1):213-8. PubMed ID: 2903051 [TBL] [Abstract][Full Text] [Related]
15. [Kinetic evidence of the interaction of three nucleotide-binding centers of mitochondrial ATP-synthetase]. Bulygin VV; Vinogradov AD Biokhimiia; 1989 Aug; 54(8):1359-67. PubMed ID: 2510833 [TBL] [Abstract][Full Text] [Related]
16. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
17. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
18. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Solaini G; Tadolini B Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925 [TBL] [Abstract][Full Text] [Related]
19. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. Syroeshkin AV; Vasilyeva EA; Vinogradov AD FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol. Flores GO; Acosta A; Puyou AG Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]