BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 6211173)

  • 1. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):9-14. PubMed ID: 6211173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP.
    Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A
    Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase.
    Galkin MA; Syroeshkin AV
    Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three adenine nucleotide binding sites in F1-F0 mitochondrial ATPase as revealed by presteady-state and steady-state kinetics of ATP hydrolysis. Evidence for two inhibitory ADP-specific noncatalytic sites.
    Bulygin VV; Vinogradov AD
    FEBS Lett; 1988 Aug; 236(2):497-500. PubMed ID: 2900778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues.
    Krull KW; Schuster SM
    Biochemistry; 1981 Mar; 20(6):1592-8. PubMed ID: 6452898
    [No Abstract]   [Full Text] [Related]  

  • 11. Requirement of medium ADP for the steady-state hydrolysis of ATP by the proton-translocating Paracoccus denitrificans Fo.F1-ATP synthase.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):304-10. PubMed ID: 16730637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential inhibition of F0F1-ATPase-catalysed reactions in bovine-heart submitochondrial particles by organotin compounds.
    Emanuel EL; Carver MA; Solani GC; Griffiths DE
    Biochim Biophys Acta; 1984 Jul; 766(1):209-14. PubMed ID: 6204688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotide binding sites on beef heart F1-ATPase. Specificity of cooperative interactions between catalytic sites.
    Nalin CM; Cross RL
    J Biol Chem; 1982 Jul; 257(14):8055-60. PubMed ID: 6211449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol.
    Flores GO; Acosta A; Puyou AG
    Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state kinetics of beef heart mitochondrial ATPase.
    Clark DD; Daggett SG; Schuster SM
    Arch Biochem Biophys; 1984 Sep; 233(2):378-92. PubMed ID: 6237608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of inosine triphosphate and bicarbonate effects on F1 ATPase to the binding change mechanism.
    Kasho VN; Boyer PD
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):407-19. PubMed ID: 6242244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase.
    Sakamoto J
    J Biochem; 1984 Aug; 96(2):483-7. PubMed ID: 6238952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MgATP-induced inhibition of the adenosine triphosphatase activity of the chloroform-released mitochondrial adenosine triphosphatase.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):433-42. PubMed ID: 6459083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.