BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6211522)

  • 61. Ca2+-independent, protein-mediated fusion of chromaffin granule ghosts with liposomes.
    Bental M; Lelkes PI; Scholma J; Hoekstra D; Wilschut J
    Biochim Biophys Acta; 1984 Jul; 774(2):296-300. PubMed ID: 6331508
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synexin and chromaffin granule membrane fusion. A novel "hydrophobic bridge" hypothesis for the driving and directing of the fusion process.
    Pollard HB; Rojas E; Burns AL
    Ann N Y Acad Sci; 1987; 493():524-41. PubMed ID: 2954501
    [No Abstract]   [Full Text] [Related]  

  • 63. A barium-dependent chromaffin granule aggregating protein from bovine adrenal medulla and other tissues.
    Lee G; de la Fuente M; Pollard HB
    Ann N Y Acad Sci; 1991; 635():477-9. PubMed ID: 1741603
    [No Abstract]   [Full Text] [Related]  

  • 64. Multiple effects of reserpine on chromaffin-granule in membranes.
    Zallakian M; Knoth J; Metropoulos GE; Njus D
    Biochemistry; 1982 Mar; 21(5):1051-5. PubMed ID: 7074047
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ca(2+)-dependent annexin self-association on membrane surfaces.
    Zaks WJ; Creutz CE
    Biochemistry; 1991 Oct; 30(40):9607-15. PubMed ID: 1911746
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cholesterol regulates membrane binding and aggregation by annexin 2 at submicromolar Ca(2+) concentration.
    Ayala-Sanmartin J; Henry JP; Pradel LA
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):18-28. PubMed ID: 11342144
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vitro reconstitution of chromaffin granule-cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes.
    Fowler VM; Pollard HB
    J Cell Biochem; 1982; 18(3):295-311. PubMed ID: 7068784
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lipid-lipid and lipid-protein interactions in chromaffin granule membranes. A spin label ESR study.
    Fretten P; Morris SJ; Watts A; Marsh D
    Biochim Biophys Acta; 1980 May; 598(2):247-59. PubMed ID: 6246946
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phosphatidylinositol kinase of bovine adrenal chromaffin granules: kinetic properties and inhibition by low concentrations of Ca2+.
    Husebye ES; Flatmark T
    Biochim Biophys Acta; 1988 Feb; 968(2):261-5. PubMed ID: 2829981
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Accessibility of phospholipids in the chromaffin granule membrane.
    Buckland RM; Radda GK; Shennan CD
    Biochim Biophys Acta; 1978 Nov; 513(3):321-37. PubMed ID: 102348
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Light scattering turbidity changes as a measure of the kinetics of Ca2+ -promoted aggregation of chromaffin granule membrane ghosts.
    Morris SJ; Hellweg MA; Haynes DH
    Biochim Biophys Acta; 1979 May; 553(2):342-50. PubMed ID: 444522
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of a membrane-bound, glycol-stimulated phospholipase A2 located in the secretory granules of the adrenal medulla.
    Hildebrandt E; Albanesi JP
    Biochemistry; 1991 Jan; 30(2):464-72. PubMed ID: 1899026
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Calmodulin-binding proteins in chromaffin cell plasma membranes.
    Fournier S; Trifaró JM
    J Neurochem; 1988 Nov; 51(5):1599-609. PubMed ID: 3171592
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Presence of tropomyosin in adrenal chromaffin cells and its association with chromaffin granule membranes.
    Burgoyne RD; Norman KM
    FEBS Lett; 1985 Jan; 179(1):25-8. PubMed ID: 3880708
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A fluorescence assay for monitoring and analyzing fusion biological membrane vesicles in vitro.
    Stutzin A
    FEBS Lett; 1986 Mar; 197(1-2):274-80. PubMed ID: 2419164
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation.
    Wilkins JA; Lin S
    Biochim Biophys Acta; 1981 Mar; 642(1):55-66. PubMed ID: 6894389
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Phosphorylation of a chromaffin granule-binding protein by protein kinase C.
    Summers TA; Creutz CE
    J Biol Chem; 1985 Feb; 260(4):2437-43. PubMed ID: 3156130
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of phospholipids in the modulation of enzyme activities in the chromaffin granule membrane.
    Buckland RM; Radda GK; Wakefield LM
    Biochim Biophys Acta; 1981 May; 643(2):363-75. PubMed ID: 6112015
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reorganization of alpha-fodrin induced by stimulation in secretory cells.
    Perrin D; Aunis D
    Nature; 1985 Jun 13-19; 315(6020):589-92. PubMed ID: 3892303
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Vanadate-sensitive ATPase from chromaffin granule membranes formed a phosphoenzyme intermediate and was activated by phosphatidylserine.
    Moriyama Y; Nelson N; Maeda M; Futai M
    Arch Biochem Biophys; 1991 Apr; 286(1):252-6. PubMed ID: 1832831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.