These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6212267)

  • 1. Butylhydroxylamine inhibits H+-driven ATP synthesis of the TF1 .Fo-ATPase incorporated into liposomes.
    Bäuerlein E; Skrzipczyk HJ; Küchler B
    FEBS Lett; 1982 May; 141(2):173-5. PubMed ID: 6212267
    [No Abstract]   [Full Text] [Related]  

  • 2. The prokaryotic thermophilic TF1-ATPase is functionally compatible with the eukaryotic CFo-part of the chloroplast ATP-synthase.
    Galmiche JM; Pezennec S; Zhao R; Girault G; Baeuerlein E
    FEBS Lett; 1994 Jan; 338(2):152-6. PubMed ID: 8307173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase.
    Deléage G; Penin F; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synthesis of enzyme-bound ATP by the F1-ATPase from the thermophilic bacterium PS3 in 50% dimethylsulfoxide.
    Yoshida M
    Biochem Biophys Res Commun; 1983 Aug; 114(3):907-12. PubMed ID: 6225432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase.
    Hochstein LI
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector.
    Negrin RS; Foster DL; Fillingame RH
    J Biol Chem; 1980 Jun; 255(12):5643-8. PubMed ID: 6445905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of ATP synthesis catalyzed by the H(+)-ATPase from chloroplasts (CF0F1) reconstituted into liposomes and coreconstituted with bacteriorhodopsin.
    Richard P; Gräber P
    Eur J Biochem; 1992 Nov; 210(1):287-91. PubMed ID: 1446676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new model of proton motive ATP synthesis: acid-base cluster hypothesis.
    Kagawa Y
    J Biochem; 1984 Jan; 95(1):295-8. PubMed ID: 6200469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton translocating ATPase: its pump, gate, and channel.
    Kagawa Y
    Adv Biophys; 1978; 10():209-47. PubMed ID: 26168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity.
    Muñoz E
    Biochim Biophys Acta; 1982 May; 650(4):233-65. PubMed ID: 6178434
    [No Abstract]   [Full Text] [Related]  

  • 11. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity.
    Clarke DJ; Morris JG
    Eur J Biochem; 1979 Aug; 98(2):613-20. PubMed ID: 39759
    [No Abstract]   [Full Text] [Related]  

  • 12. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1.
    Becher B; Müller V
    J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of the electrogenicity of the H+-ATPase from thermophilic bacterium PS3 reconstituted in planar phospholipid bilayers.
    Hirata H; Ohno K; Sone N; Kagawa Y; Hamamoto T
    J Biol Chem; 1986 Jul; 261(21):9839-43. PubMed ID: 2874134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and flexibility of the alpha-subunit of F1-ATPase from the thermophilic bacterium PS3.
    Paradies HH; Kagawa Y
    FEBS Lett; 1981 Dec; 136(1):3-7. PubMed ID: 6459243
    [No Abstract]   [Full Text] [Related]  

  • 15. Energy coupling to ATP synthesis by the proton-translocating ATPase.
    Maloney PC
    J Membr Biol; 1982; 67(1):1-12. PubMed ID: 6178829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proton-translocating ATPase of Candida tropicalis plasma membrane.
    Blasco F; Gidrol X
    Biochimie; 1982 Jul; 64(7):531-6. PubMed ID: 6215067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net ATP synthesis in H+ -atpase macroliposomes by an external electric field.
    Rögner M; Ohno K; Hamamoto T; Sone N; Kagawa Y
    Biochem Biophys Res Commun; 1979 Nov; 91(1):362-7. PubMed ID: 42395
    [No Abstract]   [Full Text] [Related]  

  • 18. Charge displacements during ATP-hydrolysis and synthesis of the Na+-transporting FoF1-ATPase of Ilyobacter tartaricus.
    Burzik C; Kaim G; Dimroth P; Bamberg E; Fendler K
    Biophys J; 2003 Sep; 85(3):2044-54. PubMed ID: 12944317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The H+-ATPase from chloroplasts: effect of different reconstitution procedures on ATP synthesis activity and on phosphate dependence of ATP synthesis.
    Grotjohann I; Gräber P
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):208-16. PubMed ID: 12460678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic pyrophosphate-driven ATP-synthesis in liposomes containing membrane-bound inorganic pyrophosphatase and F0-F1 complex from Rhodospirillum rubrum.
    Nyrén P; Baltscheffsky M
    FEBS Lett; 1983 May; 155(1):125-30. PubMed ID: 6132837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.