BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6212653)

  • 1. The differences in growth and activity of the tryptophan-NAD pathway between Wistar and Sprague Dawley strains of rats fed on tryptophan-limited diet.
    Shibata K; Motooka K; Murata K
    J Nutr Sci Vitaminol (Tokyo); 1982 Feb; 28(1):11-9. PubMed ID: 6212653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of diet restriction on some key enzymes tryptophan-NAD pathway in rats.
    Satyanarayana U; Narasinga Rao BS
    J Nutr; 1977 Dec; 107(12):2213-8. PubMed ID: 200723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary tryptophan level and the enzymes of tryptophan NAD pathway.
    Satyanarayana U; Rao BS
    Br J Nutr; 1980 Jan; 43(1):107-13. PubMed ID: 7370207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary protein level on some key enzymes of the tryptophan-NAD pathway.
    Satyanarayana U; Rao BS
    Br J Nutr; 1977 Jul; 38(1):39-45. PubMed ID: 196615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dietary orotic acid on the levels of liver and blood NAD in rats.
    Shibata K; Murata K; Hayakawa T; Iwai K
    J Nutr Sci Vitaminol (Tokyo); 1985 Jun; 31(3):265-78. PubMed ID: 2933493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change of tryptophan-niacin metabolism in D-galactosamine-induced liver injury in rat.
    Egashira Y; Komine T; Ohta T; Shibata K; Sanada H
    J Nutr Sci Vitaminol (Tokyo); 1997 Apr; 43(2):233-9. PubMed ID: 9219096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan metabolism along the kynurenine pathway in diet-induced and genetic hypercholesterolemic rabbits.
    Allegri G; Ragazzi E; Costa CV; Caparrotta L; Biasiolo M; Comai S; Bertazzo A
    Clin Chim Acta; 2004 Dec; 350(1-2):41-9. PubMed ID: 15530458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pyrazines on the metabolism of tryptophan and nicotinamide adenine dinucleotide in the rat. Evidence of the formation of a potent inhibitor of aminocarboxy-muconate-semialdehyde decarboxylase from pyrazinamide.
    Nasu S; Yamaguchi K; Sakakibara S; Imai H; Ueda I
    Biochim Biophys Acta; 1981 Sep; 677(1):109-19. PubMed ID: 6794644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probable mechanisms of regulation of the utilization of dietary tryptophan, nicotinamide and nicotinic acid as precursors of nicotinamide nucleotides in the rat.
    Bender DA; Magboul BI; Wynick D
    Br J Nutr; 1982 Jul; 48(1):119-27. PubMed ID: 6213259
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of tryptophan intake on oxidation of [7a-14C]tryptophan and urinary excretion on N1-methylnicotinamide in the rat.
    Patterson JI; Harper AE
    J Nutr; 1982 Apr; 112(4):766-75. PubMed ID: 6461733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dietary fat and protein on the activity of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase and the urinary excretion of niacin metabolites in rats.
    Sanada H; Takahashi T; Miyazaki M
    J Nutr Sci Vitaminol (Tokyo); 1991 Feb; 37(1):39-51. PubMed ID: 1880630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nicotinamide intake on urinary excretion of N1-methylnicotinamide and oxidation of [7a-14C]tryptophan in the rat.
    Patterson JI; Harper AE
    J Nutr; 1982 Apr; 112(4):776-81. PubMed ID: 6461734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The niacin required for optimum growth can be synthesized from L-tryptophan in growing mice lacking tryptophan-2,3-dioxygenase.
    Terakata M; Fukuwatari T; Kadota E; Sano M; Kanai M; Nakamura T; Funakoshi H; Shibata K
    J Nutr; 2013 Jul; 143(7):1046-51. PubMed ID: 23700344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased conversion ratio of tryptophan to niacin by the administration of clofibrate, a hypolipidemic drug, to rats.
    Shibata K; Kondo T; Marugami M; Umezawa C
    Biosci Biotechnol Biochem; 1996 Sep; 60(9):1455-9. PubMed ID: 8987594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin.
    Shibata K; Mushiage M; Kondo T; Hayakawa T; Tsuge H
    Biosci Biotechnol Biochem; 1995 Nov; 59(11):2060-3. PubMed ID: 8541642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme activities along the tryptophan-nicotinic acid pathway in alloxan diabetic rabbits.
    Ragazzi E; Costa CV; Caparrotta L; Biasiolo M; Bertazzo A; Allegri G
    Biochim Biophys Acta; 2002 May; 1571(1):9-17. PubMed ID: 12031285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of excess intake of leucine and valine deficiency on tryptophan and niacin metabolites in humans.
    Nakagawa I; Oguri S; Sasaki A; Kajimoto M; Sasaki M
    J Nutr; 1975 Oct; 105(10):1241-52. PubMed ID: 125788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo conversion of tryptophan to nicotinic acid in rats studied by simultaneous incorporation of [3H]-tryptophan and [14C]-nicotinic acid into liver NAD and NADP.
    Satyanarayana U; Rao BS
    Ann Nutr Metab; 1983; 27(1):1-7. PubMed ID: 6830138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relation between urinary excretion of tryptophan and niacin metabolites and pyridine nucleotides in the liver in rats fed a tryptophan-deficient diet.
    Oguri S
    J Nutr Sci Vitaminol (Tokyo); 1974; 20(4):257-61. PubMed ID: 4154977
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of a dietary excess of leucine and of the addition of leucine and 2-oxo-isocaproate on the metabolism of tryptophan and niacin in isolated rat liver cells.
    Bender DA
    Br J Nutr; 1989 May; 61(3):629-40. PubMed ID: 2527060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.