BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 621272)

  • 1. Quantitative methods for the gas chromatographic characterization of acidic fermentation by-products of anaerobic bacteria.
    Bohannon TE; Manius G; Mamaril F; Li Wen LF
    J Chromatogr Sci; 1978 Jan; 16(1):28-35. PubMed ID: 621272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of eight growth media upon fermentation profiles of ten anaerobic bacteria.
    Turton LJ; Drucker DB; Hillier VF; Ganguli LA
    J Appl Bacteriol; 1983 Apr; 54(2):295-304. PubMed ID: 6853401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of 1,2-O-iso-propylidene-D-glucofuranose ("monoacetone glucose") by anaerobic bacteria.
    Cmelik SH
    Zentralbl Bakteriol A; 1980; 247(4):495-501. PubMed ID: 7456850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media.
    Salanitro JP; Muirhead PA
    Appl Microbiol; 1975 Mar; 29(3):374-81. PubMed ID: 1167776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of alcohols and volatile fatty acids by head-space gas chromatography in identification of anaerobic bacteria.
    Larsson L; Märdh PA; Odham G
    J Clin Microbiol; 1978 Jan; 7(1):23-7. PubMed ID: 203602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presumptive diagnosis of anaerobic bacteremia by gas-liquid chromatography of blood cultures.
    Wüst J
    J Clin Microbiol; 1977 Dec; 6(6):586-90. PubMed ID: 591630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Clostridium difficile and its differentiation from Clostridium sporogenes by automatic head-space gas chromatography.
    Larsson L; Holst E; Gemmell CG; Mårdh PA
    Scand J Infect Dis Suppl; 1980; (Suppl 22):37-40. PubMed ID: 6937946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative gas chromatography of Bacteroides species under different growth conditions.
    Lindner JG; Marcelis JH
    Antonie Van Leeuwenhoek; 1978; 44(1):1-14. PubMed ID: 655693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity.
    Richter H; Loftus SE; Angenent LT
    Environ Technol; 2013; 34(13-16):1983-94. PubMed ID: 24350452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. V. Transformation of chenodeoxycholic acid by saccharolytic bacteroides-species (author's transl)].
    Edenharder R; Stubenrauch S; Slemrova J
    Zentralbl Bakteriol Orig B; 1976 Aug; 162(5-6):506-18. PubMed ID: 983545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas chromatographic-mass spectral studies after methylation of metabolites produced by some anaerobic bacteria in spent media.
    Carlier JP; Sellier N
    J Chromatogr; 1989 Sep; 493(2):257-73. PubMed ID: 2584294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glucose concentration in the growth medium upon neutral and acidic fermentation end-products of Clostridium bifermentans, Clostridium sporogenes and peptostreptococcus anaerobius.
    Turton LJ; Drucker DB; Ganguli LA
    J Med Microbiol; 1983 Feb; 16(1):61-7. PubMed ID: 6822993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria.
    Shu YZ; Kingston DG; Van Tassell RL; Wilkins TD
    Xenobiotica; 1991 Jun; 21(6):737-50. PubMed ID: 1949905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.
    Ren NQ; Chua H; Chan SY; Tsang YF; Wang YJ; Sin N
    Bioresour Technol; 2007 Jul; 98(9):1774-80. PubMed ID: 16935495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fermentation of lactulose by colonic bacteria.
    Sahota SS; Bramley PM; Menzies IS
    J Gen Microbiol; 1982 Feb; 128(2):319-25. PubMed ID: 6804597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid temperature programmed gas-liquid chromatography of volatile fatty acids (C1-C7) for the identification of anaerobic bacteria.
    Morin A; Paquette G
    Experientia; 1980 Dec; 36(12):1380-1. PubMed ID: 7202642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Gas chromatographic analysis of the metabolic products of anaerobic bacteria. 2. Clostridia].
    Tararin PA; Moskalev AV
    Lab Delo; 1991; (9):69-70. PubMed ID: 1721965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum.
    Van Gent-Ruijters ML; DeVries W; Southamer AH
    J Gen Microbiol; 1975 May; 88(1):36-48. PubMed ID: 168306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide dismutase in anaerobic bacteria of clinical significance.
    Tally FP; Goldin BR; Jacobus NV; Gorbach SL
    Infect Immun; 1977 Apr; 16(1):20-5. PubMed ID: 326669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Micromethods and gas chromatography analysis of carboxylic acids produced from the fermentation of glucose in the identification of Corynebacteria].
    Estrangin E; Thiers B; Peloux Y
    Ann Biol Clin (Paris); 1987; 45(3):285-9. PubMed ID: 3662135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.