These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6212932)

  • 1. Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family.
    Rogers DT; Lemire JM; Bostian KA
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2157-61. PubMed ID: 6212932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA and homology mapping of two DNA fragments with repressible acid phosphatase genes from Saccharomyces cerevisiae.
    Andersen N; Thill GP; Kramer RA
    Mol Cell Biol; 1983 Apr; 3(4):562-9. PubMed ID: 6343839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast.
    Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A
    Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two yeast acid phosphatase structural genes are the result of a tandem duplication and show different degrees of homology in their promoter and coding sequences.
    Meyhack B; Bajwa W; Rudolph H; Hinnen A
    EMBO J; 1982; 1(6):675-80. PubMed ID: 6329697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic instability of constitutive acid phosphatase in shochu and sake yeast.
    Takashita H; Kajiwara Y; Shimoda M; Matsuoka M; Ogawa T; Ono K
    J Biosci Bioeng; 2013 Jul; 116(1):71-8. PubMed ID: 23395640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of the positive-acting regulatory gene PHO4 from Saccharomyces cerevisiae.
    Koren R; LeVitre J; Bostian KA
    Gene; 1986; 41(2-3):271-80. PubMed ID: 3011600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Yoshida K; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):40-6. PubMed ID: 2671650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acid phosphatase genes PHO10 and PHO11 in S. cerevisiae are located at the telomeres of chromosomes VIII and I.
    Venter U; Hörz W
    Nucleic Acids Res; 1989 Feb; 17(4):1353-69. PubMed ID: 2646592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the 5'-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae.
    Thill GP; Kramer RA; Turner KJ; Bostian KA
    Mol Cell Biol; 1983 Apr; 3(4):570-9. PubMed ID: 6343840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of yeast genes with mRNA levels controlled by phosphate concentration.
    Kramer RA; Andersen N
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6541-5. PubMed ID: 6256743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vesicular transport of extracellular acid phosphatases in yeast Saccharomyces cerevisiae.
    Blinnikova EI; Mirjuschenko FL; Shabalin YA; Egorov SN
    Biochemistry (Mosc); 2002 Apr; 67(4):485-90. PubMed ID: 11996663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulated expression of a human interferon gene in yeast: control by phosphate concentration or temperature.
    Kramer RA; DeChiara TM; Schaber MD; Hilliker S
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):367-70. PubMed ID: 6320183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast.
    Almer A; Hörz W
    EMBO J; 1986 Oct; 5(10):2681-7. PubMed ID: 3023055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.