These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6213857)

  • 1. Phenylglyoxal inactivation of the mitochondrial adenosine triphosphatase from Trypanosoma cruzi.
    Cataldi de Flombaum MA; Stoppani AO
    Mol Biochem Parasitol; 1982 Jun; 5(6):371-9. PubMed ID: 6213857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of efrapeptin, aurovertin and citreoviridin on the mitochondrial adenosine triphosphatase from Trypanosoma cruzi.
    Cataldi de Flombaum MA; Stoppani AO
    Mol Biochem Parasitol; 1981 Jul; 3(3):143-55. PubMed ID: 6454845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of the mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals: role of thiol groups.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1987 Jun; 14(6):1035-41. PubMed ID: 2968797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional arginine residue in the vacuolar H(+)-ATPase of higher plants.
    Bennett AB; Borcherts K
    Biochim Biophys Acta; 1990 Mar; 1023(1):119-23. PubMed ID: 1690574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polyamines on mitochondrial F-ATPase from Crithidia fasciculata and Trypanosoma cruzi.
    Rilo MC; Stoppani AO
    Biochem Mol Biol Int; 1993 Jan; 29(1):131-9. PubMed ID: 8490559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solubilization and some properties of the Mg2+-activated adenosine triphosphatase from Trypanosoma cruzi.
    Frasch AC; Cazzulo JJ; Stoppani AO
    Comp Biochem Physiol B; 1978; 61(2):207-12. PubMed ID: 162584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ethidium bromide on the mitochondrial adenosine triphosphatase from Trypanosoma cruzi.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Apr; 12(4):513-9. PubMed ID: 2941019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine triphosphatase activities in Trypanosoma cruzi.
    Frasch AC; Segura EL; Cazzulo JJ; Stoppani AO
    Comp Biochem Physiol B; 1978; 60(3):271-5. PubMed ID: 162583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efrapeptin prevents modification by phenylglyoxal of an essential arginyl residue in mitochondrial adenosine triphosphatase.
    Kohlbrenner WE; Cross RL
    J Biol Chem; 1978 Nov; 253(21):7609-11. PubMed ID: 151685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural rearrangements in soluble mitochondrial ATPase.
    Chernyak BV; Chernyak VY; Gladysheva TB; Kozhanova ZE; Kozlov IA
    Biochim Biophys Acta; 1981 May; 635(3):552-70. PubMed ID: 6453613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of liver prenyl transferase and its inactivation by phenylglyoxal.
    Barnard GF; Popják G
    Biochim Biophys Acta; 1980 Feb; 617(2):169-82. PubMed ID: 7357016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of phenylglyoxal with the human erythrocyte (Ca2+ + Mg2+)-ATPase. Evidence for the presence of an essential arginyl residue.
    Raess BU; Record DM; Tunnicliff G
    Mol Pharmacol; 1985 Apr; 27(4):444-50. PubMed ID: 3157046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.