These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 6214553)
21. Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. Ogawa Y; Kurebayashi N; Harafuji H J Biochem; 1986 Nov; 100(5):1305-18. PubMed ID: 3493243 [TBL] [Abstract][Full Text] [Related]
22. Evidence of a calcium-induced structural change in the ATP-binding site of the sarcoplasmic-reticulum Ca2+-ATPase using terbium formycin triphosphate as an analogue of Mg-ATP. Girardet JL; Dupont Y; Lacapere JJ Eur J Biochem; 1989 Sep; 184(1):131-40. PubMed ID: 2528452 [TBL] [Abstract][Full Text] [Related]
23. Stoichiometric photolabeling of two distinct low and high affinity nucleotide sites in sarcoplasmic reticulum ATPase. Carvalho-Alves PC; Oliveira CR; Verjovski-Almeida S J Biol Chem; 1985 Apr; 260(7):4282-7. PubMed ID: 3156855 [TBL] [Abstract][Full Text] [Related]
24. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. Huang SG; Weisshart K; Fanning E Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494 [TBL] [Abstract][Full Text] [Related]
25. Antagonistic binding of substrates to 3-phosphoglycerate kinase monitored by the fluorescent analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Vas M; Merli A; Rossi GL Biochem J; 1994 Aug; 301 ( Pt 3)(Pt 3):885-91. PubMed ID: 8053912 [TBL] [Abstract][Full Text] [Related]
26. Chemical modification of the Ca2+ -dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Use of 2, 4, 6-trinitrobenzenesulfonate to show functional movements of the ATPase molecule. Yamamoto T; Tonomura Y J Biochem; 1976 Apr; 79(4):693-707. PubMed ID: 132437 [TBL] [Abstract][Full Text] [Related]
27. pH and magnesium dependence of ATP binding to sarcoplasmic reticulum ATPase. Evidence that the catalytic ATP-binding site consists of two domains. Lacapère JJ; Bennett N; Dupont Y; Guillain F J Biol Chem; 1990 Jan; 265(1):348-53. PubMed ID: 2136738 [TBL] [Abstract][Full Text] [Related]
28. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Yoshida H; Tonomura Y J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370 [TBL] [Abstract][Full Text] [Related]
30. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
31. Measurements of ATP binding on the large cytoplasmic loop of the sarcoplasmic reticulum Ca(2+)-ATPase overexpressed in Escherichia coli. Moutin MJ; Cuillel M; Rapin C; Miras R; Anger M; Lompré AM; Dupont Y J Biol Chem; 1994 Apr; 269(15):11147-54. PubMed ID: 8157641 [TBL] [Abstract][Full Text] [Related]
32. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter. Liu R; Sharom FJ Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112 [TBL] [Abstract][Full Text] [Related]
33. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. McIntosh DB; Woolley DG; Vilsen B; Andersen JP J Biol Chem; 1996 Oct; 271(42):25778-89. PubMed ID: 8824206 [TBL] [Abstract][Full Text] [Related]
34. Determination of the ATP Affinity of the Sarcoplasmic Reticulum Ca(2+)-ATPase by Competitive Inhibition of [γ-(32)P]TNP-8N3-ATP Photolabeling. Clausen JD; McIntosh DB; Woolley DG; Andersen JP Methods Mol Biol; 2016; 1377():233-59. PubMed ID: 26695037 [TBL] [Abstract][Full Text] [Related]
35. Mode of action of diethyl ether on ATP-dependent Ca2+ transport by sarcoplasmic reticulum vesicles. Salama G; Scarpa A Biochem Pharmacol; 1983 Nov; 32(22):3465-77. PubMed ID: 6316982 [TBL] [Abstract][Full Text] [Related]
36. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. Ward DG; Cavieres JD J Biol Chem; 1998 Jun; 273(23):14277-84. PubMed ID: 9603934 [TBL] [Abstract][Full Text] [Related]
37. The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase. Grubmeyer C; Penefsky HS J Biol Chem; 1981 Apr; 256(8):3718-27. PubMed ID: 6452454 [TBL] [Abstract][Full Text] [Related]
38. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. Wakabayashi S; Shigekawa M J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367 [TBL] [Abstract][Full Text] [Related]
39. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles. Souza DO; de Meis L J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211 [TBL] [Abstract][Full Text] [Related]