These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6214784)

  • 1. Concerning 1e- transfer in reduction by dihydronicotinamide: reaction of oxidized flavin and flavin radical with N-benzyl-1,5-dihydronicotinamide.
    Powell MF; Wong WH; Bruice TC
    Proc Natl Acad Sci U S A; 1982 Aug; 79(15):4604-8. PubMed ID: 6214784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism.
    Blankenhorn G
    Eur J Biochem; 1976 Aug; 67(1):67-80. PubMed ID: 134889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular complexes between N-methyl-1,4-dihydronicotinamide and flavines. The influence of steric and electronic factors on complex formation and the rate of flavine-dependent dihydronicotinamide dehydrogenation.
    Blankenhorn G
    Biochemistry; 1975 Jul; 14(14):3172-6. PubMed ID: 238584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative kinetic temperature effect on the hydride transfer from NADH analogue BNAH to the radical cation of N-benzylphenothiazine in acetonitrile.
    Zhu XQ; Zhang JY; Cheng JP
    J Org Chem; 2006 Sep; 71(18):7007-15. PubMed ID: 16930056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of electron-transfer oxidation of NADH analogues and chemiluminescence. Detection of the keto and enol radical cations.
    Fukuzumi S; Inada O; Suenobu T
    J Am Chem Soc; 2003 Apr; 125(16):4808-16. PubMed ID: 12696900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-nicotinamide biscoenzymes: models for the interaction between NADH (NADPH) and flavin in flavoenzymes. Reaction rates and physicochemical properties of intermediate species.
    Blankenhorn G
    Eur J Biochem; 1975 Jan; 50(2):351-6. PubMed ID: 236183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of 5-deazaflavin radicals as compared to natural flavosemiquinones.
    Goldberg M; Pecht I; Kramer HE; Traber R; Hemmerich P
    Biochim Biophys Acta; 1981 Apr; 673(4):570-93. PubMed ID: 6894393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coenzyme models. 10. Rapid oxidation of NADH by a flavin immobilized in cationic polyelectrolytes.
    Shinkai S; Yamada S; Kunitake T
    Macromolecules; 1978; 11(1):65-8. PubMed ID: 202809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical mechanisms for 1,5-dihydroflavin reduction of carbonyl compounds.
    Williams RF; Shinkai S; Bruice TC
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1763-7. PubMed ID: 240160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct detection of radical cations of NADH analogues.
    Fukuzumi S; Inada O; Suenobu T
    J Am Chem Soc; 2002 Dec; 124(49):14538-9. PubMed ID: 12465955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Low to Intermediate Water Concentrations on Proton-Coupled Electron Transfer (PCET) Reactions of Flavins in Aprotic Solvents and a Comparison with the PCET Reactions of Quinones.
    Tan SL; Novianti ML; Webster RD
    J Phys Chem B; 2015 Nov; 119(44):14053-64. PubMed ID: 26447846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent effects of flavin electron transfer reactions.
    Ahmad I; Tollin G
    Biochemistry; 1981 Sep; 20(20):5925-8. PubMed ID: 7295708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple pathways in the oxidation of a NADH analogue.
    Song N; Zhang MT; Binstead RA; Fang Z; Meyer TJ
    Inorg Chem; 2014 Apr; 53(8):4100-5. PubMed ID: 24716437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinction of 2e- and 1e- reduction modes of the flavin chromophore as studied by flash photolysis.
    Hemmerich P; Knappe WR; Kramer HE; Traber R
    Eur J Biochem; 1980 Mar; 104(2):511-20. PubMed ID: 7363903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of Fe(II) by Flavins under Anoxic Conditions.
    Zhang P; Van Cappellen P; Pi K; Yuan S
    Environ Sci Technol; 2020 Sep; 54(18):11622-11630. PubMed ID: 32812763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insight into the Mechanism of NADH Model Oxidation by Metal Ions in Nonalkaline Media.
    Yang JD; Chen BL; Zhu XQ
    J Phys Chem B; 2018 Jul; 122(27):6888-6898. PubMed ID: 29886742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase.
    Ohnishi T; King TE; Salerno JC; Blum H; Bowyer JR; Maida T
    J Biol Chem; 1981 Jun; 256(11):5577-82. PubMed ID: 6263883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced oxidation of unsaturated lipids as sensitized by flavins.
    Huvaere K; Cardoso DR; Homem-de-Mello P; Westermann S; Skibsted LH
    J Phys Chem B; 2010 Apr; 114(16):5583-93. PubMed ID: 20377218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of C4a- and N5-covalent adducts in the flavin oxidation of carbanions.
    Chan TW; Bruice TC
    Biochemistry; 1978 Oct; 17(22):4784-93. PubMed ID: 728387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.