These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 621493)

  • 1. Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye.
    Minke B; Kirschfeld K
    J Gen Physiol; 1978 Jan; 71(1):37-45. PubMed ID: 621493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment.
    Minke B; Hochstein S; Hillman P
    J Gen Physiol; 1973 Jul; 62(1):87-104. PubMed ID: 4767025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral correlates of a quasi-stable depolarization in barnacle photoreceptor following red light.
    Brown HM; Cornwall MC
    J Physiol; 1975 Jul; 248(3):555-78. PubMed ID: 1151837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin.
    Minke B; Kirschfeld K
    J Gen Physiol; 1979 May; 73(5):517-40. PubMed ID: 458418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process.
    Hochstein S; Minke B; Hillman P
    J Gen Physiol; 1973 Jul; 62(1):105-28. PubMed ID: 4767023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epi-illumination microspectrophotometry.
    Vanhoutte KJ; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 May; 191(5):461-73. PubMed ID: 15754191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microspectrophotometry of rhodopsin and metarhodopsin in the moth Galleria.
    Goldman LJ; Barnes SN; Goldsmith TH
    J Gen Physiol; 1975 Sep; 66(3):383-404. PubMed ID: 240907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of light adaptation in barnacle photoreceptors.
    Strong J; Lisman J
    Science; 1978 Jun; 200(4349):1485-7. PubMed ID: 663629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper limit on translational diffusion of visual pigment in intact unfixed barnacle photoreceptors.
    Almagor E; Hillman P; Minke B
    Biophys Struct Mech; 1979; 5(2-3):243-8. PubMed ID: 22730598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual response in barnacle photoreceptors is not initiated by transitions to and from metarhodopsin.
    Atzmon Z; Hillman P; Hochstein S
    Nature; 1978 Jul; 274(5666):74-6. PubMed ID: 661999
    [No Abstract]   [Full Text] [Related]  

  • 11. Nonlocal interactions in the photoreceptor transduction process.
    Hillman P; Hochstein S; Minke B
    J Gen Physiol; 1976 Aug; 68(2):227-45. PubMed ID: 182904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial properties of the prolonged depolarizing afterpotential in barnacle photoreceptors. I. The induction process.
    Almagor E; Hillman P; Minke B
    J Gen Physiol; 1986 Mar; 87(3):391-405. PubMed ID: 3958692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of light by metarhodopsin modifies the effect of a conditioning light on the barnacle photoreceptor.
    Hanani M; Hillman P
    Biophys Struct Mech; 1979; 5(2-3):231-5. PubMed ID: 22730596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral sensitivity of the barnacle, Balanus amphitrite.
    Stratten WP; Ogden TE
    J Gen Physiol; 1971 Apr; 57(4):435-47. PubMed ID: 4323488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of barnacle photoreceptors to high energy flashes of short duration.
    Krischer CC; Dahl RD; Körfer M
    Z Naturforsch C Biosci; 1978; 33(7-8):600-4. PubMed ID: 152011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive rod-cone degeneration in the dog: characterization of the visual pigment.
    Parkes JH; Aguirre G; Rockey JH; Liebman PA
    Invest Ophthalmol Vis Sci; 1982 Nov; 23(5):674-8. PubMed ID: 7129812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gecko visual pigments: a microspectrophotometric study.
    Crescitelli F; Dartnall HJ; Loew ER
    J Physiol; 1977 Jun; 268(2):559-73. PubMed ID: 874921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microspectrophotometry of single rhabdoms in the retina of the honeybee drone (Apis mellifera male).
    Muri RB; Jones GJ
    J Gen Physiol; 1983 Oct; 82(4):469-96. PubMed ID: 6644268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of pigment transitions to sensitivity changes in the barnacle photoreceptor and the correlation with the prolonged depolarizing afterpotential.
    Hanani M; Hillman P
    Biophys Struct Mech; 1982; 8(3):161-72. PubMed ID: 7093430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microspectrophotometric studies on the visual pigment in the intact retina of the goldfish, Carassius auratus (Linn.).
    Zyznar ES; Larson WL; Ali MA
    Rev Can Biol; 1978 Sep; 37(3):143-56. PubMed ID: 715263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.