These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 6215068)
1. [Mechanisms of the regulation of muscle energy metabolism on oxidation of glucose and fatty acids. A mathematical model]. Dynnik VV Biokhimiia; 1982 Aug; 47(8):1278-88. PubMed ID: 6215068 [TBL] [Abstract][Full Text] [Related]
2. [Ratio between carbohydrate and lipid metabolism in muscle cell energy metabolism during ATPase loading. Mathematical model]. Dynnik VV Biofizika; 1981; 26(4):712-8. PubMed ID: 6456774 [TBL] [Abstract][Full Text] [Related]
3. [Mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPase load]. Dynnik VV; Khaĭnrikh R; Sel'kov EE Biokhimiia; 1980 May; 45(5):771-82. PubMed ID: 6445762 [TBL] [Abstract][Full Text] [Related]
4. A computer model of gluconeogenesis and lipid metabolism in the perfused liver. Chalhoub E; Hanson RW; Belovich JM Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1676-86. PubMed ID: 17911349 [TBL] [Abstract][Full Text] [Related]
5. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect]. Khainrikh R; Dynnik VV; Sel'kov EE Biokhimiia; 1980 Jun; 45(6):963-73. PubMed ID: 6452176 [TBL] [Abstract][Full Text] [Related]
6. [A mathematical model of the pyruvate oxidation in liver mitochondria. 1. Regulation of the Krebs cycle by adenine and pyridine nucleotides]. Dynnik VV; Temnov AV Biokhimiia; 1977 Jun; 42(6):1030-44. PubMed ID: 196685 [TBL] [Abstract][Full Text] [Related]
7. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell. Diederichs F Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733 [TBL] [Abstract][Full Text] [Related]
8. Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle. Rowan AN; Newsholme EA Biochem J; 1979 Jan; 178(1):209-16. PubMed ID: 435278 [TBL] [Abstract][Full Text] [Related]
9. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex. Zanatta A; Schuck PF; Viegas CM; Knebel LA; Busanello EN; Moura AP; Wajner M Brain Res; 2009 Nov; 1298():186-93. PubMed ID: 19733154 [TBL] [Abstract][Full Text] [Related]
10. Age-related changes in glucose utilization and fatty acid oxidation in a muscle-specific manner during rabbit growth. Gondret F; Damon M; Jadhao SB; Houdebine LM; Herpin P; Hocquette JF J Muscle Res Cell Motil; 2004; 25(4-5):405-10. PubMed ID: 15548870 [TBL] [Abstract][Full Text] [Related]
11. [Mechanisms regulating citric acid metabolism in the brain]. Eshchenko ND; Prokhorova MI Vopr Biokhim Mozga; 1976; 11():78-88. PubMed ID: 23609 [TBL] [Abstract][Full Text] [Related]
12. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462 [TBL] [Abstract][Full Text] [Related]
13. Comparative energy metabolism in cultured heart muscle and HeLa cells. Stanisz J; Wice BM; Kennell DE J Cell Physiol; 1983 Jun; 115(3):320-30. PubMed ID: 6853608 [TBL] [Abstract][Full Text] [Related]
14. The effect of ethionine on the energy-producing metabolism in the rat pancreas. II. Alterations of tissue levels of adenine nucleotides, pyridine nucleotides, and glycolytic metabolites. Goebell H Horm Metab Res; 1974 Jan; 6(1):44-9. PubMed ID: 4150487 [No Abstract] [Full Text] [Related]
15. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Ahmed N; Williams JF; Weidemann MJ Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014 [TBL] [Abstract][Full Text] [Related]
16. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Randle PJ; England PJ; Denton RM Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122 [TBL] [Abstract][Full Text] [Related]
17. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. Lei B; Lionetti V; Young ME; Chandler MP; d'Agostino C; Kang E; Altarejos M; Matsuo K; Hintze TH; Stanley WC; Recchia FA J Mol Cell Cardiol; 2004 Apr; 36(4):567-76. PubMed ID: 15081316 [TBL] [Abstract][Full Text] [Related]
18. Exercise and energy metabolism. Maddaiah VT Pediatr Ann; 1984 Jul; 13(7):565-72. PubMed ID: 6472907 [TBL] [Abstract][Full Text] [Related]
19. Glycolysis and energy metabolism in rat liver during warm and cold ischemia: evidence of an activation of the regulatory enzyme phosphofructokinase. Churchill TA; Cheetham KM; Fuller BJ Cryobiology; 1994 Oct; 31(5):441-52. PubMed ID: 7988153 [TBL] [Abstract][Full Text] [Related]
20. Compensatory regulation in metabolic pathways--responses to increases and decreases in citrate synthase levels. Walsh K; Schena M; Flint AJ; Koshland DE Biochem Soc Symp; 1987; 54():183-95. PubMed ID: 3332995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]