These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6215809)

  • 1. Transitions between alternate ATP-producing and ATP-consuming stationary states in a reconstituted enzyme system containing phosphofructokinase.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1982; 41(5):415-24. PubMed ID: 6215809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diminution of stationary enzyme activities at increases of pyruvate kinase concentration in a reconstituted enzyme system.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1983; 42(1):57-72. PubMed ID: 6224485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-linear dynamic phenomena in open reconstituted enzyme systems.
    Eschrich K; Schellenberger W; Hofmann E
    Acta Biol Med Ger; 1979; 38(11-12):K25-33. PubMed ID: 233181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-stabilization of the energy charge in a reconstituted enzyme system containing phosphofructokinase.
    Schellenberger W; Eschrich K; Hofmann E
    Eur J Biochem; 1981 Aug; 118(2):309-14. PubMed ID: 6269852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selforganization of a glycolytic reconstituted enzyme system: alternate stable stationary states, hysteretic transitions and stabilization of the energy charge.
    Schellenberger W; Eschrich K; Hofmann E
    Adv Enzyme Regul; 1980; 19():257-84. PubMed ID: 6461225
    [No Abstract]   [Full Text] [Related]  

  • 7. Oscillations in the phosphofructokinase--fructose 1,6-bisphosphatase cycle. II. Influence of fructose 1,6-bisphosphatase on the character of oscillatory states.
    Eschrich K; Schellenberger W; Hofmann E
    Biomed Biochim Acta; 1983; 42(6):609-21. PubMed ID: 6314995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic properties of in vitro enzyme systems containing phosphofructokinase.
    Schellenberger W; Eschrich K; Hofmann E
    Acta Biol Med Ger; 1978; 37(9):1425-41. PubMed ID: 155382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of enzyme concentrations on sustained oscillations in the fructose 6-phosphate/fructose 1,6-bisphosphate-cycle.
    Schellenberger W; Eschrich K; Hofmann E
    Biomed Biochim Acta; 1984; 43(2):227-31. PubMed ID: 6329162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic properties of a phosphofructokinase/pyruvate kinase system. Experiments in vitro using the substrate-stat technique.
    Cumme GA; Bublitz R; Horn A
    Eur J Biochem; 1981 Mar; 115(1):59-65. PubMed ID: 6453003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hysteretic cycle in glucose 6-phosphate metabolism observed in a cell-free yeast extract.
    Eschrich K; Schellenberger W; Hofmann E
    Eur J Biochem; 1990 Mar; 188(3):697-703. PubMed ID: 2158887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative model of human erythrocyte glycolysis. I. Relationship between the stationary rate of glycolysis and the ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kholodenko BN; Erlikh LI
    Biofizika; 1977; 22(3):483-8. PubMed ID: 142521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative model of human erythrocyte glycolysis. Region of cell viability determined by ATP concentration].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Kholodenko BN
    Biofizika; 1979; 24(6):1048-53. PubMed ID: 159725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreversible metabolic transitions: the glucose 6-phosphate metabolism in yeast cell-free extracts.
    Coevoet MA; Hervagault JF
    Biochem Biophys Res Commun; 1997 May; 234(1):162-6. PubMed ID: 9168982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic aspects of ATP amplification reactions.
    Chittock RS; Hawronskyj JM; Holah J; Wharton CW
    Anal Biochem; 1998 Jan; 255(1):120-6. PubMed ID: 9448850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.
    Satoh T; Shinoda Y; Alexandrov M; Kuroda A; Murakami Y
    Anal Biochem; 2008 Aug; 379(1):116-20. PubMed ID: 18492480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Multiplicity of auto-oscillations and steady states in an open reaction catalyzed by E. coli phosphofructokinase. Quantitative model].
    Malkova IA; Popova SV; Sel'kov EE
    Biofizika; 1980; 25(3):503-7. PubMed ID: 6446941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal organization of the phosphofructokinase/fructose-1,6-biphosphatase cycle.
    Hofmann E; Eschrich K; Schellenberger W
    Adv Enzyme Regul; 1985; 23():331-62. PubMed ID: 3000145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of a self-amplifying substrate cycle: ADP-ATP cycling assay.
    Valero E; Varón R; García-Carmona F
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):237-43. PubMed ID: 10926849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.