These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 6217833)
1. Equilibrium binding of 125I-labeled adenosinetriphosphatase inhibitor protein to complex V of the mitochondrial oxidative phosphorylation system. Wong SY; Galante YM; Hatefi Y Biochemistry; 1982 Nov; 21(23):5781-7. PubMed ID: 6217833 [No Abstract] [Full Text] [Related]
2. Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues. Krull KW; Schuster SM Biochemistry; 1981 Mar; 20(6):1592-8. PubMed ID: 6452898 [No Abstract] [Full Text] [Related]
3. Proton--adenosinetriphosphatase complex of rat liver mitochondria: effect of energy state on its interaction with the adenosinetriphosphatase inhibitory peptide. Schwerzmann K; Pedersen PL Biochemistry; 1981 Oct; 20(22):6305-11. PubMed ID: 6458327 [No Abstract] [Full Text] [Related]
4. Pyridoxylation of essential lysine residues of mitochondrial adenosine triphosphatase. Koga PG; Cross RL Biochim Biophys Acta; 1982 Feb; 679(2):269-78. PubMed ID: 6460527 [No Abstract] [Full Text] [Related]
5. Interaction of [14C]dicyclohexylcarbodiimide with complex V (mitochondrial adenosine triphosphate synthetase complex). Kiehl R; Hatefi Y Biochemistry; 1980 Feb; 19(3):541-8. PubMed ID: 6444515 [No Abstract] [Full Text] [Related]
6. Independent inhibitions of mitochondrial complex V by the adenosinetriphosphatase inhibitor protein and active-site modifiers. Galante YM; Wong SY; Hatefi Y Biochemistry; 1982 Feb; 21(4):680-7. PubMed ID: 6462171 [TBL] [Abstract][Full Text] [Related]
7. A new model of proton motive ATP synthesis: acid-base cluster hypothesis. Kagawa Y J Biochem; 1984 Jan; 95(1):295-8. PubMed ID: 6200469 [TBL] [Abstract][Full Text] [Related]
8. Labeling of thiols involved in the activity of complex V of the mitochondrial oxidative phosphorylation system. Godinot C; Gautheron DC; Galante Y; Hatefi Y J Biol Chem; 1981 Jul; 256(13):6776-82. PubMed ID: 6453870 [No Abstract] [Full Text] [Related]
9. Resolution and reconstitution of complex V of the mitochondrial oxidative phosphorylation system: properties and composition of the membrane sector. Galante YM; Wong SY; Hatefi Y Arch Biochem Biophys; 1981 Oct; 211(2):643-51. PubMed ID: 6458242 [No Abstract] [Full Text] [Related]
10. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. Dröse S; Altendorf K J Exp Biol; 1997 Jan; 200(Pt 1):1-8. PubMed ID: 9023991 [TBL] [Abstract][Full Text] [Related]
11. Reaction mechanism of the ATPase activity of mitochondrial F1 studied by using a fluorescent ATP analog, 2'-(5-dimethylaminonaphthalene-1-sulfonyl) amino-2'-deoxyATP: its striking resemblance to that of myosin ATPase. Matsuoka I; Watanabe T; Tonomura Y J Biochem; 1981 Oct; 90(4):967-89. PubMed ID: 6458602 [No Abstract] [Full Text] [Related]
12. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
13. The proton-translocating pumps of oxidative phosphorylation. Fillingame RH Annu Rev Biochem; 1980; 49():1079-113. PubMed ID: 6157352 [No Abstract] [Full Text] [Related]
14. Chemical approach to the structure and functioning of the H+-linked ATPases. Exploration of binding sites for natural ligands on the F1 -ATPases by photoaffinity labeling. Vignais PV; Dianoux AC; Klein G; Lauquin GJ; Lunardi J; Pougeois R; Satre M Prog Clin Biol Res; 1982; 102 Pt B():439-47. PubMed ID: 6219398 [No Abstract] [Full Text] [Related]
15. Proton-adenosinetriphosphatase complex of rat liver mitochondria: effect of its inhibitory peptide on adenosine 5'-triphosphate hydrolytic and functional activities of the enzyme. Cintrón NM; Hullihen J; Schwerzmann K; Pedersen PL Biochemistry; 1982 Apr; 21(8):1878-85. PubMed ID: 6211190 [No Abstract] [Full Text] [Related]
16. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. Horstman LL; Racker E J Biol Chem; 1970 Mar; 245(6):1336-44. PubMed ID: 4245874 [No Abstract] [Full Text] [Related]
17. "Hysteric" behavior and nucleotide binding sites of pig heart mitochondrial F1 adenosine 5'-triphosphatase. Di Pietro A; Penin F; Godinot C; Gautheron DC Biochemistry; 1980 Dec; 19(25):5671-8. PubMed ID: 6450613 [No Abstract] [Full Text] [Related]
18. The mechanism and regulation of ATP synthesis by F1-ATPases. Cross RL Annu Rev Biochem; 1981; 50():681-714. PubMed ID: 6455964 [No Abstract] [Full Text] [Related]
19. Effect of pH on the sensitivity of mitochondrial ATPase to free ATP, ADP and anions. Santiago E; López-Moratalla N; López-Zabalza MJ; Iriarte AJ; Campo ML Rev Esp Fisiol; 1980 Dec; 36(4):413-20. PubMed ID: 6452663 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical gradient induced displacement of the natural ATPase inhibitor protein from mitochondrial ATPase as directed by antibodies against the inhibitor protein. Dreyfus G; Gómez-Puyou A; Iuena de Gómez-Puyou M Biochem Biophys Res Commun; 1981 May; 100(1):400-6. PubMed ID: 6167259 [No Abstract] [Full Text] [Related] [Next] [New Search]