These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 6219481)

  • 1. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--I. The effect of ultrasonic beam width on the output of maximum, mean and RMS frequency processors.
    Evans DH
    Ultrasound Med Biol; 1982; 8(6):605-9. PubMed ID: 6219481
    [No Abstract]   [Full Text] [Related]  

  • 2. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--III. The calculation of Doppler power spectra from mean velocity waveforms, and the results of processing these spectra with maximum, mean, and RMS frequency processors.
    Evans DH
    Ultrasound Med Biol; 1982; 8(6):617-23. PubMed ID: 6219483
    [No Abstract]   [Full Text] [Related]  

  • 3. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--II. A comparison between mean and maximum velocity waveforms in a canine model.
    Evans DH; MacPherson DS
    Ultrasound Med Biol; 1982; 8(6):611-5. PubMed ID: 6219482
    [No Abstract]   [Full Text] [Related]  

  • 4. On the measurement of the mean velocity of blood flow over the cardiac cycle using Doppler ultrasound.
    Evans DH
    Ultrasound Med Biol; 1985; 11(5):735-41. PubMed ID: 2932831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analogue mean frequency estimator for the quantitative measurement of blood flow by Doppler ultrasound.
    Evans JM; Beard JD; Skidmore R; Horrocks M
    Clin Phys Physiol Meas; 1987 Nov; 8(4):309-15. PubMed ID: 2962804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of the zero-crossing counter used with ultrasonic doppler flowmeter].
    Mita K; Okumura T; Tsutsui T; Omoto R; Wanibuchi Y
    Iyodenshi To Seitai Kogaku; 1975 Aug; 13(4):223-31. PubMed ID: 127866
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of deviation from plane wave conditions on the Doppler spectrum from an ultrasonic blood flow detector.
    Ata OW; Fish PJ
    Ultrasonics; 1991 Sep; 29(5):395-403. PubMed ID: 1831941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous frequency, mean frequency, and variance of mean frequency estimators for ultrasonic blood velocity Doppler signals.
    Angelsen BA
    IEEE Trans Biomed Eng; 1981 Nov; 28(11):733-41. PubMed ID: 7319510
    [No Abstract]   [Full Text] [Related]  

  • 9. Design of a continuous-wave Doppler ultrasonic flowmeter for perivascular application. Part 1. Probe design.
    Richardson PC; Stevens AL; Cowan D; Calil S; Roberts VC
    Med Biol Eng Comput; 1987 Nov; 25(6):661-6. PubMed ID: 2974911
    [No Abstract]   [Full Text] [Related]  

  • 10. A maximum frequency detector for Doppler blood velocimeters.
    Callicot C; Lunt MJ
    J Med Eng Technol; 1979 Mar; 3(2):80-2. PubMed ID: 162187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency modulated ultrasonic Doppler flowmeter.
    McCarty K; Woodcock JP
    Med Biol Eng; 1975 Jan; 13(1):59-64. PubMed ID: 127896
    [No Abstract]   [Full Text] [Related]  

  • 12. Theoretical analysis of the CW doppler ultrasonic flowmeter.
    Brody WR; Meindl JD
    IEEE Trans Biomed Eng; 1974 May; 21(3):183-92. PubMed ID: 4277736
    [No Abstract]   [Full Text] [Related]  

  • 13. A two-dimensional Doppler ultrasonic probe for flow measurement.
    Ashrafzadeh AR; Dormer KJ; Cheung JY
    Biomed Instrum Technol; 1989; 23(4):301-7. PubMed ID: 2529943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computer system for on-line decoding of ultrasonic Doppler signals from blood flow measurement.
    Wille S
    Ultrasonics; 1977 Sep; 15(5):226-30. PubMed ID: 143101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annular arrays for quantitative pulsed doppler ultrasonic flowmeters.
    Fu CC; Gerzberg L
    Ultrason Imaging; 1983 Jan; 5(1):1-16. PubMed ID: 6222531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative transcutaneous measurements of blood flow in carotid artery by means of pulse and continuous wave Doppler methods.
    BorodziƄski K; FilipczyƄski I; Nowicki A; Powalowski T
    Ultrasound Med Biol; 1976 Jun; 2(3):189-93. PubMed ID: 136777
    [No Abstract]   [Full Text] [Related]  

  • 17. Instantaneous and continuous cardiac output obtained with a Doppler pulmonary artery catheter.
    Segal J; Pearl RG; Ford AJ; Stern RA; Gehlbach SM
    J Am Coll Cardiol; 1989 May; 13(6):1382-92. PubMed ID: 2703619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative ultrasonic blood flow measurement in Dacron grafts.
    LoGerfo FW; Corson JD
    Surgery; 1976 May; 79(5):569-72. PubMed ID: 131380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On ultrasonic MTI measurement of velocity profiles in blood flow.
    Angelsen BA; Kristoffersen K
    IEEE Trans Biomed Eng; 1979 Dec; 26(12):665-71. PubMed ID: 544438
    [No Abstract]   [Full Text] [Related]  

  • 20. A double beam Doppler ultrasound method for quantitative blood flow velocity measurement.
    Wei-qi W; Lin-xin Y
    Ultrasound Med Biol; 1982; 8(4):421-5. PubMed ID: 7112728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.