These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 6219481)
1. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--I. The effect of ultrasonic beam width on the output of maximum, mean and RMS frequency processors. Evans DH Ultrasound Med Biol; 1982; 8(6):605-9. PubMed ID: 6219481 [No Abstract] [Full Text] [Related]
2. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--III. The calculation of Doppler power spectra from mean velocity waveforms, and the results of processing these spectra with maximum, mean, and RMS frequency processors. Evans DH Ultrasound Med Biol; 1982; 8(6):617-23. PubMed ID: 6219483 [No Abstract] [Full Text] [Related]
3. Some aspects of the relationship between instantaneous volumetric blood flow and continuous wave Doppler ultrasound recordings--II. A comparison between mean and maximum velocity waveforms in a canine model. Evans DH; MacPherson DS Ultrasound Med Biol; 1982; 8(6):611-5. PubMed ID: 6219482 [No Abstract] [Full Text] [Related]
4. On the measurement of the mean velocity of blood flow over the cardiac cycle using Doppler ultrasound. Evans DH Ultrasound Med Biol; 1985; 11(5):735-41. PubMed ID: 2932831 [TBL] [Abstract][Full Text] [Related]
5. An analogue mean frequency estimator for the quantitative measurement of blood flow by Doppler ultrasound. Evans JM; Beard JD; Skidmore R; Horrocks M Clin Phys Physiol Meas; 1987 Nov; 8(4):309-15. PubMed ID: 2962804 [TBL] [Abstract][Full Text] [Related]
6. [Evaluation of the zero-crossing counter used with ultrasonic doppler flowmeter]. Mita K; Okumura T; Tsutsui T; Omoto R; Wanibuchi Y Iyodenshi To Seitai Kogaku; 1975 Aug; 13(4):223-31. PubMed ID: 127866 [No Abstract] [Full Text] [Related]
7. Effect of deviation from plane wave conditions on the Doppler spectrum from an ultrasonic blood flow detector. Ata OW; Fish PJ Ultrasonics; 1991 Sep; 29(5):395-403. PubMed ID: 1831941 [TBL] [Abstract][Full Text] [Related]
8. Instantaneous frequency, mean frequency, and variance of mean frequency estimators for ultrasonic blood velocity Doppler signals. Angelsen BA IEEE Trans Biomed Eng; 1981 Nov; 28(11):733-41. PubMed ID: 7319510 [No Abstract] [Full Text] [Related]
9. Design of a continuous-wave Doppler ultrasonic flowmeter for perivascular application. Part 1. Probe design. Richardson PC; Stevens AL; Cowan D; Calil S; Roberts VC Med Biol Eng Comput; 1987 Nov; 25(6):661-6. PubMed ID: 2974911 [No Abstract] [Full Text] [Related]
10. A maximum frequency detector for Doppler blood velocimeters. Callicot C; Lunt MJ J Med Eng Technol; 1979 Mar; 3(2):80-2. PubMed ID: 162187 [TBL] [Abstract][Full Text] [Related]
14. A computer system for on-line decoding of ultrasonic Doppler signals from blood flow measurement. Wille S Ultrasonics; 1977 Sep; 15(5):226-30. PubMed ID: 143101 [TBL] [Abstract][Full Text] [Related]
15. Annular arrays for quantitative pulsed doppler ultrasonic flowmeters. Fu CC; Gerzberg L Ultrason Imaging; 1983 Jan; 5(1):1-16. PubMed ID: 6222531 [TBL] [Abstract][Full Text] [Related]
16. Quantitative transcutaneous measurements of blood flow in carotid artery by means of pulse and continuous wave Doppler methods. BorodziĆski K; FilipczyĆski I; Nowicki A; Powalowski T Ultrasound Med Biol; 1976 Jun; 2(3):189-93. PubMed ID: 136777 [No Abstract] [Full Text] [Related]
17. Instantaneous and continuous cardiac output obtained with a Doppler pulmonary artery catheter. Segal J; Pearl RG; Ford AJ; Stern RA; Gehlbach SM J Am Coll Cardiol; 1989 May; 13(6):1382-92. PubMed ID: 2703619 [TBL] [Abstract][Full Text] [Related]