These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6219750)

  • 1. Membrane phenotype of murine effector and suppressor T cells involved in delayed hypersensitivity and protective immunity to herpes simplex virus.
    Nash AA; Gell PG
    Cell Immunol; 1983 Feb; 75(2):348-55. PubMed ID: 6219750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed hypersensitivity and immune protection against herpes simplex virus: suppressor T cells that regulate the induction of delayed hypersensitivity effector T cells also regulate the induction of protective T cells.
    Schrier RD; Ishioka GY; Pizer LI; Moorhead JW
    J Immunol; 1985 May; 134(5):2889-93. PubMed ID: 2580006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of first-order Cryptococcus-specific T-suppressor cells on induction of cells responsible for delayed-type hypersensitivity.
    Murphy JW
    Infect Immun; 1985 May; 48(2):439-45. PubMed ID: 3157646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Split T-cell tolerance in herpes simplex virus-infected mice and its implication for anti-viral immunity.
    Nash AA; Ashford NP
    Immunology; 1982 Apr; 45(4):761-7. PubMed ID: 6279490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice.
    Yasumoto S; Hayashi Y; Aurelian L
    J Immunol; 1987 Oct; 139(8):2788-93. PubMed ID: 2821119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of T-lymphocyte subsets in recovery from herpes simplex virus infection.
    Larsen HS; Feng MF; Horohov DW; Moore RN; Rouse BT
    J Virol; 1984 Apr; 50(1):56-9. PubMed ID: 6608007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of contrasuppression in the adoptive transfer of immunity.
    Iverson M; Ptak W; Green DR; Gershon RK
    J Exp Med; 1983 Sep; 158(3):982-7. PubMed ID: 6224887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system.
    Nash AA; Jayasuriya A; Phelan J; Cobbold SP; Waldmann H; Prospero T
    J Gen Virol; 1987 Mar; 68 ( Pt 3)():825-33. PubMed ID: 2950204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response.
    Nash AA; Phelan J; Wildy P
    J Immunol; 1981 Apr; 126(4):1260-2. PubMed ID: 6259256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of suppressor T cells in herpes simplex virus-induced immune deviation.
    Whittum JA; Niederkorn JY; McCulley JP; Streilein JW
    J Virol; 1984 Aug; 51(2):556-8. PubMed ID: 6086965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tolerance and suppression of immunity to herpes simplex virus: different presentations of antigens induce different types of suppressor cells.
    Schrier RD; Pizer LI; Moorhead JW
    Infect Immun; 1983 May; 40(2):514-22. PubMed ID: 6301998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunologic regulation of experimental cutaneous leishmaniasis. V. Characterization of effector and specific suppressor T cells.
    Liew FY; Hale C; Howard JG
    J Immunol; 1982 Apr; 128(4):1917-22. PubMed ID: 6120976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herpes simplex virus-specific lymphoproliferation: an analysis of the involvement of lymphocyte subsets.
    Horohov DW; Moore RN; Rouse BT
    Immunobiology; 1985 Dec; 170(5):460-73. PubMed ID: 3005161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo modulation of antigen presentation generates Ts rather than TDH in HSV-1 infection.
    Howie SE; Ross JA; Norval M; Maingay JP
    Immunology; 1987 Mar; 60(3):419-23. PubMed ID: 2952587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of suppression of delayed type hypersensitivity to herpes simplex virus by epidermal cells exposed to UV-irradiated urocanic acid in vivo.
    Ross JA; Howie SE; Norval M; Maingay JP
    Viral Immunol; 1987-1988; 1(3):191-8. PubMed ID: 2978455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Candida albicans mannan-induced, mannan-specific delayed hypersensitivity suppressor cells.
    Garner RE; Childress AM; Human LG; Domer JE
    Infect Immun; 1990 Aug; 58(8):2613-20. PubMed ID: 2142482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular interactions in the adoptive transfer of contact sensitivity: characterization of an antigen-nonspecific Vicia villosa-adherent T cell needed for adoptive transfer into naive recipients.
    Ptak W; Green DR; Flood P
    J Immunol; 1986 Sep; 137(6):1822-8. PubMed ID: 2943803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed-type hypersensitivity to influenza virus. Induction of antigen-specific suppressor T cells for delayed-type hypersensitivity to hemagglutinin during influenza virus infection in mice.
    Liew FY; Russell SM
    J Exp Med; 1980 Apr; 151(4):799-814. PubMed ID: 6154762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-mediated immunity in herpes simplex virus-infected mice: suppression of delayed hypersensitivity by an antigen-specific B lymphocyte.
    Nash AA; Gell PG
    J Gen Virol; 1980 Jun; 48(Pt 2):359-64. PubMed ID: 6249886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-mediated immunity in herpes simplex virus-infected mice: induction, characterization and antiviral effects of delayed type hypersensitivity.
    Nash AA; Field HJ; Quartey-Papafio R
    J Gen Virol; 1980 Jun; 48(Pt 2):351-7. PubMed ID: 6249885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.