These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6220691)

  • 41. The influence of the culture pH value on the direct glucose oxidative pathway in Klebsiella pneumoniae NCTC 418.
    Hommes RW; Postma PW; Tempest DW; Neijssel OM
    Arch Microbiol; 1989; 151(3):261-7. PubMed ID: 2650650
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous culture studies on the synthesis of capsular polysaccharide by Klebsiella pneumoniae K1.
    Mengistu Y; Edwards C; Saunders JR
    J Appl Bacteriol; 1994 May; 76(5):424-30. PubMed ID: 8005831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Envelope protein alterations in a conditional mutant of Klebsiella pneumoniae with pH dependent morphology and temperature dependent division.
    Satta G; Canepari P; Fontana R; Calegari L
    Ann Microbiol (Paris); 1974 Sep; 125 B(2):259-73. PubMed ID: 4142369
    [No Abstract]   [Full Text] [Related]  

  • 44. Organophosphate degrading enzymes in the crude supernatant fraction from the rat liver.
    Miyata T; Matsumura F
    J Agric Food Chem; 1972; 20(1):30-2. PubMed ID: 5059939
    [No Abstract]   [Full Text] [Related]  

  • 45. Reactive sulfhydryl groups of coenzyme B12-dependent diol dehydrase: differential modification of essential and nonessential ones.
    Kuno S; Toraya T; Fukui S
    Arch Biochem Biophys; 1981 Sep; 210(2):474-80. PubMed ID: 7030205
    [No Abstract]   [Full Text] [Related]  

  • 46. The ultrastructure of the capsules of Diplococcus pneumoniae and Klebsiella pneumoniae stained with ruthenium red.
    Springer EL; Roth IL
    J Gen Microbiol; 1973 Jan; 74(1):21-31. PubMed ID: 4121098
    [No Abstract]   [Full Text] [Related]  

  • 47. Chemical ionization mass spectrometry of isofenphos and its metabolites.
    Cairns T; Siegmund EG; Bong RL
    Anal Chem; 1984 Nov; 56(13):2547-52. PubMed ID: 6517337
    [No Abstract]   [Full Text] [Related]  

  • 48. Fungal degradation of organophosphorus insecticides.
    Bumpus JA; Kakar SN; Coleman RD
    Appl Biochem Biotechnol; 1993; 39-40():715-26. PubMed ID: 7686734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indole-positive strains of Klebsiella pneumoniae producing hydrogen sulfide in iron-agar slants.
    Braunstein H; Tomasulo M
    Am J Clin Pathol; 1976 May; 65(5):702-5. PubMed ID: 16535814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of Staphylococcus aureus and Klebsiella pneumoniae peritonitis in mice exposed to normal and hypoxic conditions on red cell oxygen transport function.
    Walker R; Wilder M; Valeri CR
    J Med; 1975; 6(2):113-20. PubMed ID: 239991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elucidation of metabolic pathways for pesticides in rotation crops.
    Simoneaux BJ; Szolics IM; Cassidy JE; Marco GJ
    J Toxicol Clin Toxicol; 1982 Aug; 19(6-7):557-70. PubMed ID: 7161847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of a luminescence-based pH optrode to monitoring of fermentation by Klebsiella pneumoniae.
    Chan CM; Lo W; Wong KY
    Biosens Bioelectron; 2000 Mar; 15(1-2):7-11. PubMed ID: 10826638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogen sulfide production from ethion by bacteria in lagoonal sediments.
    Sherman JC; Nevin TA; Lasater JA
    Bull Environ Contam Toxicol; 1974 Sep; 12(3):359-65. PubMed ID: 4433881
    [No Abstract]   [Full Text] [Related]  

  • 54. Metabolism of organophosphorus insecticides. XI. Metabolic fate of dimethoate in the rat.
    Hassan A; Zayed SM; Bahig MR
    Biochem Pharmacol; 1969 Oct; 18(10):2429-38. PubMed ID: 5403981
    [No Abstract]   [Full Text] [Related]  

  • 55. [Microbial degradation of the organophosphate insecticide phosalone].
    Golovleva LA; Baskunov BP; Finkel'shteĭn ZI; Nefedova MIu
    Izv Akad Nauk SSSR Biol; 1983; (1):60-9. PubMed ID: 6826888
    [No Abstract]   [Full Text] [Related]  

  • 56. Persistence of quinalphos and occurrence of its primary metabolite in soils.
    Babu GV; Reddy BR; Narasimha G; Sethunathan N
    Bull Environ Contam Toxicol; 1998 May; 60(5):724-31. PubMed ID: 9595187
    [No Abstract]   [Full Text] [Related]  

  • 57. Metabolism of monocrotophos and quinalphos by algae isolated from soil.
    Megharaj M; Venkateswarlu K; Rao AS
    Bull Environ Contam Toxicol; 1987 Aug; 39(2):251-6. PubMed ID: 3663978
    [No Abstract]   [Full Text] [Related]  

  • 58. Excretion of toxaphene and dioxathion in the milk of dairy.
    Keating MI
    Bull Anim Health Prod Afr; 1979 Dec; 27(4):279-86. PubMed ID: 548142
    [No Abstract]   [Full Text] [Related]  

  • 59. Species specificity of phosphate triester anticholinesterases.
    Donninger C
    Bull World Health Organ; 1971; 44(1-3):265-8. PubMed ID: 4999483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An acetylcholinesterase sensitive to sulfhydryl inhibitors.
    Zahavi M; Tahori AS; Klimer F
    Biochim Biophys Acta; 1972 Aug; 276(2):577-83. PubMed ID: 5068830
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.