These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6220742)

  • 1. Determinants of calcium loading at steady state in sarcoplasmic reticulum.
    Feher JJ; Briggs FN
    Biochim Biophys Acta; 1983 Jan; 727(2):389-402. PubMed ID: 6220742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+].
    Berman MC
    Biochim Biophys Acta; 1999 Apr; 1418(1):48-60. PubMed ID: 10209210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-Ca2+ exchange catalyzed by the membrane-bound Ca2+, Mg2+-ATPase of sarcoplasmic reticulum vesicles.
    Kanazawa T; Takakuwa Y
    Curr Top Cell Regul; 1984; 24():423-34. PubMed ID: 6149890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation.
    Froehlich JP; Heller PF
    Biochemistry; 1985 Jan; 24(1):126-36. PubMed ID: 3158340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the steady-state calcium fluxes in skeletal sarcoplasmic reticulum vesicles. Role of the Ca2+ pump.
    Soler F; Teruel JA; Fernandez-Belda F; Gomez-Fernandez JC
    Eur J Biochem; 1990 Sep; 192(2):347-54. PubMed ID: 2145156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of monovalent cations on the Ca2+-ATPase of sarcoplasmic reticulum isolated from rabbit skeletal and dog cardiac muscles. An interpretation of transient-state kinetic data.
    Wang T; Grassi de Gende AO; Tsai LI; Schwartz A
    Biochim Biophys Acta; 1981 Oct; 637(3):523-9. PubMed ID: 6456766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca2+ permeability of sarcoplasmic reticulum vesicles. II. Ca2+ efflux in the energized state of the calcium pump.
    Gerdes U; Møller JV
    Biochim Biophys Acta; 1983 Oct; 734(2):191-200. PubMed ID: 6225460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Characterization of calcium permeability at steady-state calcium load in masseter muscle sarcoplasmic reticulum].
    Takada H
    Kanagawa Shigaku; 1989 Dec; 24(3):440-9. PubMed ID: 2489661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic changes of sarcoplasmic reticulum vesicles during Ca2+ uptake.
    Beeler T
    J Membr Biol; 1983; 76(2):165-71. PubMed ID: 6227751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Ca2+ + Mg2+)-ATPase activity associated with the maintenance of a Ca2+ gradient by sarcoplasmic reticulum at submicromolar external [Ca2+]. The effect of hypothyroidism.
    Simonides WS; Van Hardeveld C
    Biochim Biophys Acta; 1988 Aug; 943(2):349-59. PubMed ID: 2456786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of functional similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium.
    Fischer TH; Campbell KP; White GC
    Biochemistry; 1987 Dec; 26(24):8024-30. PubMed ID: 2962642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic activity of dystrophic chicken sarcoplasmic reticulum.
    Hanna S; Kawamoto R; McNamee M; Baskin RJ
    Biochim Biophys Acta; 1981 Apr; 643(1):41-54. PubMed ID: 6263337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results.
    Feher JJ; Briggs FN
    Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of calcium load on the calcium permeability of sarcoplasmic reticulum.
    Feher JJ; Briggs FN
    J Biol Chem; 1982 Sep; 257(17):10191-9. PubMed ID: 6809746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump.
    Inesi G; de Meis L
    J Biol Chem; 1989 Apr; 264(10):5929-36. PubMed ID: 2522442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of phenothiazines on Ca2+ fluxes in skeletal muscle sarcoplasmic reticulum.
    Volpe P; Costello B; Chu A; Fleischer S
    Arch Biochem Biophys; 1984 Aug; 233(1):174-9. PubMed ID: 6147120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the phosphoenzyme that is involved in the Ca2+ -Ca2+ exchange catalyzed by the Ca2+ -ATPase of sarcoplasmic reticulum vesicles.
    Inao S; Kanazawa T
    Biochim Biophys Acta; 1986 May; 857(1):28-37. PubMed ID: 2938630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ATP/ADP/phosphate potential on the maximal steady-state uptake of Ca2+ by skeletal sarcoplasmic reticulum.
    Dixon D; Corbett A; Haynes DH
    J Bioenerg Biomembr; 1982 Apr; 14(2):87-96. PubMed ID: 6124541
    [No Abstract]   [Full Text] [Related]  

  • 19. Modulation of stoichiometry of the sarcoplasmic reticulum calcium pump may enhance thermodynamic efficiency.
    Gafni A; Boyer PD
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):98-101. PubMed ID: 3155860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The role of Ca2+-ATpase and its hydrophobic component in the release of Ca2+ from skeletal muscle sarcoplasmic reticulum].
    Voĭtsitskiĭ VM; Fedorov AN; Kurskiĭ MD; Kucherenko NE; Tugaĭ VA
    Biokhimiia; 1988 Sep; 53(9):1427-32. PubMed ID: 2974308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.