BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6221378)

  • 1. Intracellular energy transport and control of cardiac contraction.
    Saks VA; Kupriyanov VV
    Adv Myocardiol; 1982; 3():475-97. PubMed ID: 6221378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems.
    Saks VA; Ventura-Clapier R; Huchua ZA; Preobrazhensky AN; Emelin IV
    Biochim Biophys Acta; 1984 Apr; 803(4):254-64. PubMed ID: 6231056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP produced by myocardial sarcolemmal-bound creatine kinase is not preferentially used by the Na+ pump.
    Philipson KD; Nishimoto AY
    Biochem Biophys Res Commun; 1984 Nov; 124(3):696-702. PubMed ID: 6508778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches.
    Saks V; Kaambre T; Guzun R; Anmann T; Sikk P; Schlattner U; Wallimann T; Aliev M; Vendelin M
    Subcell Biochem; 2007; 46():27-65. PubMed ID: 18652071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions.
    Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI
    Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial creatine kinase in mammalian myocardial cells in culture.
    Seraydarian MW; Yang JJ
    Adv Myocardiol; 1982; 3():613-20. PubMed ID: 7170446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The localization of the MM isozyme of creatine phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na+, K+)-ATPase.
    Saks VA; Lipina NV; Sharov VG; Smirnov VN; Chazov E; Grosse R
    Biochim Biophys Acta; 1977 Mar; 465(3):550-8. PubMed ID: 138445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV
    Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes.
    Jacobus WE; Moreadith RW; Vandegaer KM
    Ann N Y Acad Sci; 1983; 414():73-89. PubMed ID: 6584077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase and protein kinase reactions of cardiac cell membranes.
    Saks VA; Kupriyanov VV; Preobrazhenskii AN; Jacobus WE
    J Mol Cell Cardiol; 1982 Sep; 14 Suppl 3():1-12. PubMed ID: 7143449
    [No Abstract]   [Full Text] [Related]  

  • 16. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts.
    Branovets J; Sepp M; Kotlyarova S; Jepihhina N; Sokolova N; Aksentijevic D; Lygate CA; Neubauer S; Vendelin M; Birkedal R
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H506-20. PubMed ID: 23792673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Specific limitations for intracellular diffusion of ADP in cardiomyocytes].
    Belikova IuO; Kuznetsov AV; Saks VA
    Biokhimiia; 1990 Nov; 55(11):1944-57. PubMed ID: 2085614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
    Birkedal R; Gesser H
    J Comp Physiol B; 2003 Aug; 173(6):493-9. PubMed ID: 12856133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.