These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 6221945)
1. Evaluation of H2O activity in the free or phosphorylated catalytic site of Ca2+-ATPase. Dupont Y; Pougeois R FEBS Lett; 1983 May; 156(1):93-8. PubMed ID: 6221945 [TBL] [Abstract][Full Text] [Related]
2. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP. Vieyra A; Mintz E; Lowe J; Guillain F Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845 [TBL] [Abstract][Full Text] [Related]
3. Phosphoenzyme conformational states and nucleotide-binding site hydrophobicity following thiol modification of the Ca2+-ATPase of sarcoplasmic reticulum from skeletal muscle. Davidson GA; Berman MC J Biol Chem; 1987 May; 262(15):7041-6. PubMed ID: 2953714 [TBL] [Abstract][Full Text] [Related]
4. Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium-dependent ATPase from sarcoplasmic reticulum. Vieyra A; Scofano HM; GuimarĂ£es-Motta H; Tume RK; de Meis L Biochim Biophys Acta; 1979 Jun; 568(2):437-45. PubMed ID: 158391 [TBL] [Abstract][Full Text] [Related]
5. Reaction of a carbodiimide adduct of ATP at the active site of sarcoplasmic reticulum calcium ATPase. Murphy AJ Biochemistry; 1990 Dec; 29(51):11236-42. PubMed ID: 2148693 [TBL] [Abstract][Full Text] [Related]
6. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum. Shoshan V; MacLennan DH J Biol Chem; 1981 Jan; 256(2):887-92. PubMed ID: 6108961 [TBL] [Abstract][Full Text] [Related]
7. Specificity of the sarcoplasmic reticulum calcium ATPase at the hydrolysis step. Chipman DM; Jencks WP Biochemistry; 1988 Jul; 27(15):5707-12. PubMed ID: 2972313 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change. Hanel AM; Jencks WP Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081 [TBL] [Abstract][Full Text] [Related]
9. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide. Suzuki H; Kanazawa T Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823 [TBL] [Abstract][Full Text] [Related]
10. Role of water in processes of energy transduction: Ca2+-transport ATPase and inorganic pyrophosphatase. de Meis L Biochem Soc Symp; 1985; 50():97-125. PubMed ID: 2428374 [TBL] [Abstract][Full Text] [Related]
11. Modification of the ATP binding site of the Ca2+ -ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate. Pick U; Bassilian S FEBS Lett; 1981 Jan; 123(1):127-30. PubMed ID: 6451451 [No Abstract] [Full Text] [Related]
12. Slow transition of phosphoenzyme from ADP-sensitive to ADP-insensitive forms in solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum: evidence for retarded dissociation of Ca2+ from the phosphoenzyme. Takakuwa Y; Kanazawa T Biochem Biophys Res Commun; 1979 Jun; 88(4):1209-16. PubMed ID: 157738 [No Abstract] [Full Text] [Related]
13. Reduction in water activity greatly retards the phosphoryl transfer from ATP to enzyme protein in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase. Suzuki H; Kanazawa T J Biol Chem; 1996 Mar; 271(10):5481-6. PubMed ID: 8621405 [TBL] [Abstract][Full Text] [Related]
14. The ATP-induced change of tryptophan fluorescence reflects a conformational change upon formation of ADP-sensitive phosphoenzyme in the sarcoplasmic reticulum Ca(2+)-ATPase. Stopped-flow spectrofluorometry and continuous flow-rapid quenching method. Nakamura S; Suzuki H; Kanazawa T J Biol Chem; 1994 Jun; 269(23):16015-9. PubMed ID: 8206898 [TBL] [Abstract][Full Text] [Related]
15. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
16. Effect of ADP on the rate of acetyl phosphate hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum. Montero-Lomeli M; De Meis L Eur J Biochem; 1989 Dec; 186(1-2):339-42. PubMed ID: 2532131 [TBL] [Abstract][Full Text] [Related]
17. Mutations of Arg198 in sarcoplasmic reticulum Ca2+-ATPase cause inhibition of hydrolysis of the phosphoenzyme intermediate formed from inorganic phosphate. Daiho T; Suzuki H; Yamasaki K; Saino T; Kanazawa T FEBS Lett; 1999 Feb; 444(1):54-8. PubMed ID: 10037147 [TBL] [Abstract][Full Text] [Related]
18. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. de Meis L; Vianna AL Annu Rev Biochem; 1979; 48():275-92. PubMed ID: 157714 [No Abstract] [Full Text] [Related]
19. Conformational changes in the vicinity of the N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine attached to the specific thiol of sarcoplasmic reticulum Ca2+-ATPase throughout the catalytic cycle. Obara M; Suzuki H; Kanazawa T J Biol Chem; 1988 Mar; 263(8):3690-7. PubMed ID: 2964442 [TBL] [Abstract][Full Text] [Related]
20. Relationship of the regulatory nucleotide site to the catalytic site of the sarcoplasmic reticulum Ca2+-ATPase. Bishop JE; Al-Shawi MK; Inesi G J Biol Chem; 1987 Apr; 262(10):4658-63. PubMed ID: 2951370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]