These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 6222047)
1. Isotope and thermal effects in chemiosmotic coupling to the membrane ATPase of Streptococcus. Khan S; Berg HC J Biol Chem; 1983 Jun; 258(11):6709-12. PubMed ID: 6222047 [TBL] [Abstract][Full Text] [Related]
2. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Khan S; Berg HC Cell; 1983 Mar; 32(3):913-9. PubMed ID: 6831561 [TBL] [Abstract][Full Text] [Related]
3. ATP synthesis driven by a protonmotive force in Streptococcus lactis. Maloney PC; Wilson TH J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650 [TBL] [Abstract][Full Text] [Related]
4. Hydrolysis and synthesis of ATP by membrane-bound ATPase from a motile Streptococcus. van der Drift C; Janssen DB; van Wezenbeek PM Arch Microbiol; 1978 Oct; 119(1):31-6. PubMed ID: 31147 [TBL] [Abstract][Full Text] [Related]
5. A protonmotive force drives ATP synthesis in bacteria. Maloney PC; Kashket ER; Wilson TH Proc Natl Acad Sci U S A; 1974 Oct; 71(10):3896-900. PubMed ID: 4279406 [TBL] [Abstract][Full Text] [Related]
6. Voltage sensitivity of the proton-translocating adenosine 5'-triphosphatase in Streptococcus lactis. Maloney PC; Schattschneider S FEBS Lett; 1980 Feb; 110(2):337-40. PubMed ID: 6245926 [No Abstract] [Full Text] [Related]
7. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion. Bond DR; Russell JB Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():687-694. PubMed ID: 10746772 [TBL] [Abstract][Full Text] [Related]
8. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase. Marin B; Marin-Lanza M; Komor E Biochem J; 1981 Aug; 198(2):365-72. PubMed ID: 6275844 [TBL] [Abstract][Full Text] [Related]
9. Electrogenic transport by the Enterococcus hirae ATPase. Apell HJ; Solioz M Biochim Biophys Acta; 1990 Jun; 1017(3):221-8. PubMed ID: 2164846 [TBL] [Abstract][Full Text] [Related]
10. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
11. Properties of the N,N'-dicyclohexylcarbodiimide resistant ATPase of Streptococcus cremoris. Rimpiläinen MA Int J Biochem; 1987; 19(8):729-32. PubMed ID: 2957254 [TBL] [Abstract][Full Text] [Related]
12. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Driessen AJ; Wickner W Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2471-5. PubMed ID: 1826054 [TBL] [Abstract][Full Text] [Related]
13. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB. Guffanti AA; Fuchs RT; Schneier M; Chiu E; Krulwich TA J Biol Chem; 1984 Mar; 259(5):2971-5. PubMed ID: 6699003 [TBL] [Abstract][Full Text] [Related]
14. In vivo and in vitro incorporation of endogenous nucleotides by the energy-transducing ATPase of Streptococcus faecalis. Zlotnick GW; Abrams A Arch Biochem Biophys; 1984 May; 230(2):517-24. PubMed ID: 6231890 [TBL] [Abstract][Full Text] [Related]
15. [Kinetics of Ca 2+ or Mg 2+ activated ATPase from lymphocyte plasma membranes]. Pau B; Dornand J; Mani JC Biochimie; 1976; 58(5):593-9. PubMed ID: 8156 [TBL] [Abstract][Full Text] [Related]
16. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. Wainio WW Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062 [TBL] [Abstract][Full Text] [Related]
17. The plasma membrane ATPase of Neurospora: a proton-pumping electroenzyme. Slayman CL J Bioenerg Biomembr; 1987 Feb; 19(1):1-20. PubMed ID: 3032928 [TBL] [Abstract][Full Text] [Related]
18. A protonmotive force drives bacterial flagella. Manson MD; Tedesco P; Berg HC; Harold FM; Van der Drift C Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3060-4. PubMed ID: 19741 [TBL] [Abstract][Full Text] [Related]
19. Speculations on the evolution of ion transport mechanisms. Wilson TH; Maloney PC Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032 [TBL] [Abstract][Full Text] [Related]
20. Active transport of Ca2+ in bacteria: bioenergetics and function. Devés R; Brodie AF Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]