BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 6222762)

  • 1. Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II).
    Van Dyke MW; Dervan PB
    Biochemistry; 1983 May; 22(10):2373-7. PubMed ID: 6222762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations into the sequence-selective binding of mithramycin and related ligands to DNA.
    Fox KR; Howarth NR
    Nucleic Acids Res; 1985 Dec; 13(24):8695-714. PubMed ID: 2934687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA.
    Van Dyke MW; Dervan PB
    Nucleic Acids Res; 1983 Aug; 11(16):5555-67. PubMed ID: 6225070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species specific differences in the toxicity of mithramycin, chromomycin A3, and olivomycin towards cultured mammalian cells.
    Gupta RS
    J Cell Physiol; 1982 Oct; 113(1):11-6. PubMed ID: 6215417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromomycin A3, mithramycin, and olivomycin: antitumor antibiotics of related structure.
    Slavik M; Carter SK
    Adv Pharmacol Chemother; 1975; 12(0):1-30. PubMed ID: 125531
    [No Abstract]   [Full Text] [Related]  

  • 6. DNA sequence specificity of the pyrrolo[1,4]benzodiazepine antitumor antibiotics. Methidiumpropyl-EDTA-iron(II) footprinting analysis of DNA binding sites for anthramycin and related drugs.
    Hertzberg RP; Hecht SM; Reynolds VL; Molineux IJ; Hurley LH
    Biochemistry; 1986 Mar; 25(6):1249-58. PubMed ID: 3008824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Evidence that the saccharide chains have a role in sequence specificity.
    Keniry MA; Banville DL; Simmonds PM; Shafer R
    J Mol Biol; 1993 Jun; 231(3):753-67. PubMed ID: 8515449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse banding on chromosomes produced by a guanosine-cytosine specific DNA binding antibiotic: olivomycin.
    van de Sande JH; Lin CC; Jorgenson KF
    Science; 1977 Jan; 195(4276):400-2. PubMed ID: 63994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous production of Q and R bands after staining with chromomycin A3 or olivomycin.
    Prantera G; Bonaccorsi S; Pimpinelli S
    Science; 1979 Apr; 204(4388):79-80. PubMed ID: 86207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential interactions of the Mg2+ complexes of chromomycin A3 and mithramycin with poly(dG-dC) x poly(dC-dG) and poly(dG) x poly(dC).
    Majee S; Sen R; Guha S; Bhattacharyya D; Dasgupta D
    Biochemistry; 1997 Feb; 36(8):2291-9. PubMed ID: 9047331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR studies of chromomycin A3 interaction with DNA.
    Berman E; Brown SC; James TL; Shafer RH
    Biochemistry; 1985 Nov; 24(24):6887-93. PubMed ID: 2416346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific staining of DNA with the fluorescent antibiotics, mithramycin, chromomycin, and olivomycin.
    Crissman HA; Tobey RA
    Methods Cell Biol; 1990; 33():97-103. PubMed ID: 1707496
    [No Abstract]   [Full Text] [Related]  

  • 13. Differential inhibition of restriction enzyme cleavage by chromophore-modified analogues of the antitumour antibiotics mithramycin and chromomycin reveals structure-activity relationships.
    Mansilla S; Garcia-Ferrer I; Méndez C; Salas JA; Portugal J
    Biochem Pharmacol; 2010 May; 79(10):1418-27. PubMed ID: 20093108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses.
    Hertzberg RP; Dervan PB
    Biochemistry; 1984 Aug; 23(17):3934-45. PubMed ID: 6435669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the DNA-binding antitumor antibiotics, chromomycin and mithramycin with erythroid spectrin.
    Majee S; Dasgupta D; Chakrabarti A
    Eur J Biochem; 1999 Mar; 260(3):619-26. PubMed ID: 10102989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific differences in the toxicity and mutagenicity of the anticancer drugs mithramycin, chromomycin A3, and olivomycin.
    Singh B; Gupta RS
    Cancer Res; 1985 Jun; 45(6):2813-20. PubMed ID: 3157449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of enzyme immunoassay for chromomycin A3 and olivomycin using beta-D-galactosidase as a label.
    Fujiwara K; Nakamura H; Kitagawa T
    Cancer Res; 1985 Nov; 45(11 Pt 1):5442-6. PubMed ID: 3931906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base specificity in the interaction of polynucleotides with antibiotic drugs.
    Ward DC; Reich E; Goldberg IH
    Science; 1965 Sep; 149(3689):1259-63. PubMed ID: 5318292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High resolution hydroxyl radical footprinting of the binding of mithramycin and related antibiotics to DNA.
    Cons BM; Fox KR
    Nucleic Acids Res; 1989 Jul; 17(14):5447-59. PubMed ID: 2548163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II).
    Van Dyke MW; Hertzberg RP; Dervan PB
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5470-4. PubMed ID: 6291045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.