These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 6223919)
41. Elucidation of the complete ferrichrome A biosynthetic pathway in Ustilago maydis. Winterberg B; Uhlmann S; Linne U; Lessing F; Marahiel MA; Eichhorn H; Kahmann R; Schirawski J Mol Microbiol; 2010 Mar; 75(5):1260-71. PubMed ID: 20070524 [TBL] [Abstract][Full Text] [Related]
42. SidL, an Aspergillus fumigatus transacetylase involved in biosynthesis of the siderophores ferricrocin and hydroxyferricrocin. Blatzer M; Schrettl M; Sarg B; Lindner HH; Pfaller K; Haas H Appl Environ Microbiol; 2011 Jul; 77(14):4959-66. PubMed ID: 21622789 [TBL] [Abstract][Full Text] [Related]
43. An insight into the iron acquisition and homeostasis in Aureobasidium melanogenum HN6.2 strain through genome mining and transcriptome analysis. Lu Y; Liu G; Jiang H; Chi Z; Chi Z Funct Integr Genomics; 2019 Jan; 19(1):137-150. PubMed ID: 30251029 [TBL] [Abstract][Full Text] [Related]
44. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B. Cuív PO; Keogh D; Clarke P; O'Connell M Mol Microbiol; 2008 Dec; 70(5):1261-73. PubMed ID: 18990190 [TBL] [Abstract][Full Text] [Related]
45. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Schneider R; Hantke K Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528 [TBL] [Abstract][Full Text] [Related]
46. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Haselwandter K; Häninger G; Ganzera M; Haas H; Nicholson G; Winkelmann G Biometals; 2013 Dec; 26(6):969-79. PubMed ID: 24057327 [TBL] [Abstract][Full Text] [Related]
47. Mutual inhibition of cobalamin and siderophore uptake systems suggests their competition for TonB function. Kadner RJ; Heller KJ J Bacteriol; 1995 Sep; 177(17):4829-35. PubMed ID: 7665457 [TBL] [Abstract][Full Text] [Related]
48. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. Hannauer M; Barda Y; Mislin GL; Shanzer A; Schalk IJ J Bacteriol; 2010 Mar; 192(5):1212-20. PubMed ID: 20047910 [TBL] [Abstract][Full Text] [Related]
49. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. Huschka H; Naegeli HU; Leuenberger-Ryf H; Keller-Schierlein W; Winkelmann G J Bacteriol; 1985 May; 162(2):715-21. PubMed ID: 2985545 [TBL] [Abstract][Full Text] [Related]
50. Iron acquisition by Neisseria meningitidis in vitro. Archibald FS; DeVoe IW Infect Immun; 1980 Feb; 27(2):322-34. PubMed ID: 6445876 [TBL] [Abstract][Full Text] [Related]
51. Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. Protchenko O; Ferea T; Rashford J; Tiedeman J; Brown PO; Botstein D; Philpott CC J Biol Chem; 2001 Dec; 276(52):49244-50. PubMed ID: 11673473 [TBL] [Abstract][Full Text] [Related]
52. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. Matzanke BF; Bill E; Trautwein AX; Winkelmann G J Bacteriol; 1987 Dec; 169(12):5873-6. PubMed ID: 2960664 [TBL] [Abstract][Full Text] [Related]
53. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. Yuan WM; Gentil GD; Budde AD; Leong SA J Bacteriol; 2001 Jul; 183(13):4040-51. PubMed ID: 11395469 [TBL] [Abstract][Full Text] [Related]
54. Functional organization of the outer membrane of escherichia coli: phage and colicin receptors as components of iron uptake systems. Braun V; Hancock RE; Hantke K; Hartmann A J Supramol Struct; 1976; 5(1):37-58. PubMed ID: 136550 [TBL] [Abstract][Full Text] [Related]
55. Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. Hoegy F; Celia H; Mislin GL; Vincent M; Gallay J; Schalk IJ J Biol Chem; 2005 May; 280(21):20222-30. PubMed ID: 15784620 [TBL] [Abstract][Full Text] [Related]
56. Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. Müller G; Raymond KN J Bacteriol; 1984 Oct; 160(1):304-12. PubMed ID: 6480557 [TBL] [Abstract][Full Text] [Related]
57. Anaerobic utilization of Fe(III)-xenosiderophores among Bacteroides species and the distinct assimilation of Fe(III)-ferrichrome by Bacteroides fragilis within the genus. Rocha ER; Krykunivsky AS Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28397401 [TBL] [Abstract][Full Text] [Related]
58. The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Moore RE; Kim Y; Philpott CC Proc Natl Acad Sci U S A; 2003 May; 100(10):5664-9. PubMed ID: 12721368 [TBL] [Abstract][Full Text] [Related]
59. Identification and characterization of genes required for utilization of desferri-ferrichrome and aerobactin in Vibrio parahaemolyticus. Funahashi T; Tanabe T; Shiuchi K; Nakao H; Yamamoto S Biol Pharm Bull; 2009 Mar; 32(3):359-65. PubMed ID: 19252278 [TBL] [Abstract][Full Text] [Related]
60. Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Lesuisse E; Blaiseau PL; Dancis A; Camadro JM Microbiology (Reading); 2001 Feb; 147(Pt 2):289-298. PubMed ID: 11158346 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]