BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 6224317)

  • 1. The size of functional T-lymphocyte pools within thymic medullary and cortical cell subsets.
    Chen WF; Scollay R; Clark-Lewis I; Shortman K
    Thymus; 1983 Apr; 5(3-4):179-95. PubMed ID: 6224317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ly phenotype of functional medullary thymocytes.
    Chen WF; Scollay R; Shortman K
    Thymus; 1983 Apr; 5(3-4):197-207. PubMed ID: 6224318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The correlation of lectin-stimulated proliferation and cytotoxicity in murine thymocytes with expression of the MEL-14-defined homing receptor.
    Wilson A; Scollay R; Reichert RA; Butcher EC; Weissman IL; Shortman K
    J Immunol; 1987 Jan; 138(2):352-7. PubMed ID: 3491850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of human thymocytes: a limiting dilution analysis of precursors with proliferative and cytolytic activities.
    Lopez-Botet M; Moretta L
    J Immunol; 1985 Apr; 134(4):2299-304. PubMed ID: 3919089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrathymic differentiation of cytotoxic T lymphocyte (CTL) precursors. I. The CTL immunocompetence of peanut agglutinin-positive (cortical) and negative (medullary) Lyt 123 thymocytes.
    Wagner H; Hardt C; Bartlett R; Röllinghoff M; Pfizenmaier K
    J Immunol; 1980 Dec; 125(6):2532-8. PubMed ID: 6159411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thymocyte subpopulations: an experimental review, including flow cytometric cross-correlations between the major murine thymocyte markers.
    Scollay R; Shortman K
    Thymus; 1983 Sep; 5(5-6):245-95. PubMed ID: 6362104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The acquisition of receptors for peanut agglutinin by peanut agglutinin-negative thymocytes and peripheral T cells.
    Schrader JW; Chen WF; Scollay R
    J Immunol; 1982 Aug; 129(2):545-9. PubMed ID: 6979577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymus hormones do not induce proliferative ability or cytolytic function in PNA+ cortical thymocytes.
    Andrews P; Shortman K; Scollay R; Potworowski EF; Kruisbeek AM; Goldstein G; Trainin N; Bach JF
    Cell Immunol; 1985 Apr; 91(2):455-66. PubMed ID: 2581700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual immunofluorescence studies of cortisone-induced thymic involution: evidence for a major cortical component to cortisone-resistant thymocytes.
    Reichert RA; Weissman IL; Butcher EC
    J Immunol; 1986 May; 136(10):3529-34. PubMed ID: 3084633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-level secretion of interleukin 2 by a subset of proliferating thymic lymphoblasts.
    Caplan B; Rothenberg E
    J Immunol; 1984 Oct; 133(4):1983-91. PubMed ID: 6332143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional capabilities of cells leaving the thymus.
    Scollay R; Chen WF; Shortman K
    J Immunol; 1984 Jan; 132(1):25-30. PubMed ID: 6197445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of early stages of T lymphocyte development in the thymus cortex and medulla.
    Scollay R; Shortman K
    J Immunol; 1985 Jun; 134(6):3632-42. PubMed ID: 3886788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymic lymphocytes. III. Cooperative phenomenon in the proliferation of thymocytes under Con A stimulation.
    Papiernik M; Jacobson JB
    Cell Immunol; 1986 Jan; 97(1):23-33. PubMed ID: 3091269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression, function, and ontogeny of a novel T cell-activating protein, TAP, in the thymus.
    Yeh ET; Reiser H; Benacerraf B; Rock KL
    J Immunol; 1986 Aug; 137(4):1232-8. PubMed ID: 2426356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and phenotypic properties of subpopulations of murine thymocytes. I. The bulk of peanut agglutinin-positive Lyt-1,2,3 thymocytes lacks precursors of cytotoxic T lymphocytes responsive to interleukin 2 (T cell growth factor).
    Kisielow P; Von Boehmer H; Haas W
    Eur J Immunol; 1982 Jun; 12(6):463-7. PubMed ID: 6180902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the target cell for a thymocyte specific growth factor in guinea pigs.
    Söder O; Ernström U
    Thymus; 1983 Apr; 5(3-4):141-52. PubMed ID: 6603682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limited immunocompetence of thymocytes within murine thymic nurse cells.
    Andrews P; Boyd RL; Shortman K
    Eur J Immunol; 1985 Oct; 15(10):1043-8. PubMed ID: 3876940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition of immune competence by a subset of human cortical thymocytes expressing mature T cell antigens.
    Umiel T; Daley JF; Bhan AK; Levey RH; Schlossman SF; Reinherz EL
    J Immunol; 1982 Sep; 129(3):1054-60. PubMed ID: 6980916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of I-region associated antigen (Ia)-bearing accessory cells in the generation of cytotoxic T cells in a subpopulation of thymocytes.
    Okuno K; Kikuchi Y; Tsuchida T; Hamaoka T; Igarashi T; Kato R; Takatsu K
    Jpn J Cancer Res; 1986 Jul; 77(7):711-21. PubMed ID: 3091558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [T-lymphocyte precursors--the target cells of thymocyte growth factor].
    Protsak EA; Shichkin VP; Iarilin AA
    Biull Eksp Biol Med; 1989 Apr; 107(4):462-4. PubMed ID: 2785826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.