These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 6224482)
1. Metabolic control of hepatic gluconeogenesis during exercise. Dohm GL; Newsholme EA Biochem J; 1983 Jun; 212(3):633-9. PubMed ID: 6224482 [TBL] [Abstract][Full Text] [Related]
2. Regulation by glucagon of hepatic pyruvate kinase, 6-phosphofructo 1-kinase, and fructose-1,6-bisphosphatase. Pilkis SJ; El-Maghrabi MR; McGrane M; Pilkis J; Claus TH Fed Proc; 1982 Aug; 41(10):2623-8. PubMed ID: 6286362 [TBL] [Abstract][Full Text] [Related]
3. Induction and suppression of the key enzymes of glycolysis and gluconeogenesis in isolated perfused rat liver in response to glucose, fructose and lactate. Wimhurst JM; Manchester KL Biochem J; 1973 May; 134(1):143-56. PubMed ID: 4353083 [TBL] [Abstract][Full Text] [Related]
4. Time course of changes in gluconeogenic enzyme activities during exercise and recovery. Dohm GL; Kasperek GJ; Barakat HA Am J Physiol; 1985 Jul; 249(1 Pt 1):E6-11. PubMed ID: 2990233 [TBL] [Abstract][Full Text] [Related]
5. Age-dependent changes in rat hepatic fructose 2, 6-bisphosphate, 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase and pyruvate kinase activity in response to a high protein diet or starvation. Chanez M; Bois-Joyeux B; Peret J Diabete Metab; 1988; 14(2):80-7. PubMed ID: 2841176 [TBL] [Abstract][Full Text] [Related]
6. Glycolytic and gluconeogenic states in an enzyme system reconstituted from phosphofructokinase and fructose 1,6-bisphosphatase. Schellenberger W; Eschrich K; Hofmann E Biomed Biochim Acta; 1985; 44(4):503-16. PubMed ID: 2992456 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of action of 2,5-anhydro-D-mannitol in hepatocytes. Effects of phosphorylated metabolites on enzymes of carbohydrate metabolism. Riquelme PT; Wernette-Hammond ME; Kneer NM; Lardy HA J Biol Chem; 1984 Apr; 259(8):5115-23. PubMed ID: 6325420 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. Claus TH; El-Maghrabi MR; Pilkis SJ J Biol Chem; 1979 Aug; 254(16):7855-64. PubMed ID: 468793 [TBL] [Abstract][Full Text] [Related]
9. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Groen AK; van Roermund CW; Vervoorn RC; Tager JM Biochem J; 1986 Jul; 237(2):379-89. PubMed ID: 3800895 [TBL] [Abstract][Full Text] [Related]
10. Gluconeogenesis and related aspects of glycolysis. Hers HG; Hue L Annu Rev Biochem; 1983; 52():617-53. PubMed ID: 6311081 [No Abstract] [Full Text] [Related]
11. Effect of treatment in vivo of rats with bacterial endotoxin on fructose 2,6-bisphosphate metabolism and L-pyruvate kinase activity and flux in isolated liver cells. Ceppi ED; Knowles RG; Carpenter KM; Titheradge MA Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):761-6. PubMed ID: 1320377 [TBL] [Abstract][Full Text] [Related]
12. Metabolic adaptation of the renal carbohydrate metabolism. I. Effects of starvation on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules. García-Salguero L; Lupiáñez JA Mol Cell Biochem; 1988 Oct; 83(2):167-78. PubMed ID: 2849053 [TBL] [Abstract][Full Text] [Related]
13. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics. Pilkis SJ; el-Maghrabi MR; Claus TH Diabetes Care; 1990 Jun; 13(6):582-99. PubMed ID: 2162755 [TBL] [Abstract][Full Text] [Related]
14. Endotoxin increases the liver fructose 2,6-bisphosphate concentration in fasted rats. Miller BC; Ishikawa E; Uyeda K; Cottam GL Biochem Biophys Res Commun; 1989 Dec; 165(3):1072-8. PubMed ID: 2558647 [TBL] [Abstract][Full Text] [Related]
15. Metabolic adaptation of the renal carbohydrate metabolism. III. Effects of high protein diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules. García-Salguero L; Lupiáñez JA Mol Cell Biochem; 1989 Oct; 90(2):99-110. PubMed ID: 2555680 [TBL] [Abstract][Full Text] [Related]
16. Metabolic adaptation of renal carbohydrate metabolism. V. In vivo response of rat renal-tubule gluconeogenesis to different diuretics. Amores MV; Hortelano P; García-Salguero L; Lupiáñez JA Mol Cell Biochem; 1994 Aug; 137(2):117-25. PubMed ID: 7845386 [TBL] [Abstract][Full Text] [Related]
17. Dynamic structures of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in a reconstituted enzyme system. Schellenberger W; Eschrich K; Hofmann E Biomed Biochim Acta; 1985; 44(6):891-901. PubMed ID: 2994640 [TBL] [Abstract][Full Text] [Related]
18. Exercise-induced regulation of key factors in substrate choice and gluconeogenesis in mouse liver. Knudsen JG; Biensø RS; Hassing HA; Jakobsen AH; Pilegaard H Mol Cell Biochem; 2015 May; 403(1-2):209-17. PubMed ID: 25702176 [TBL] [Abstract][Full Text] [Related]
19. Impairment of the modulation by glucose of hepatic gluconeogenesis in the genetically obese (fa/fa) Zucker rat. Sánchez-Gutiérrez JC; Lechuga CG; Sánchez-Arias JA; Samper B; Felíu JE Endocrinology; 1995 May; 136(5):1877-84. PubMed ID: 7720633 [TBL] [Abstract][Full Text] [Related]