These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6224786)

  • 21. Purification and reconstitution of Na+/D-glucose cotransport carriers from guinea pig small intestine.
    Kano-Kameyama A; Hoshi T
    Jpn J Physiol; 1983; 33(6):955-70. PubMed ID: 6687072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of glucose transport activity reconstituted from heart and other tissues.
    Wheeler TJ; Cole D; Hauck MA
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):217-30. PubMed ID: 9804957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solubilization and functional reconstitution of the proline transport system of Escherichia coli.
    Chen CC; Wilson TH
    J Biol Chem; 1986 Feb; 261(6):2599-604. PubMed ID: 3512540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K; Nishi Y; Takesue Y
    Biochem Pharmacol; 1983 Nov; 32(22):3453-7. PubMed ID: 6651868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solubilization and reconstitution of hepatic System A-mediated amino acid transport. Preparation of proteoliposomes containing glucagon-stimulated transport activity.
    Bracy DS; Schenerman MA; Kilberg MS
    Biochim Biophys Acta; 1987 May; 899(1):51-8. PubMed ID: 3567191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation and reconstitution of sodium-dependent glucose transport activity from renal brush-border membranes using gel-filtration chromatography.
    Poirée JC; Starita-Geribaldi M; Sudaka P
    Biochim Biophys Acta; 1986 Jun; 858(1):83-91. PubMed ID: 3707963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial characterization of the glucose transport activity in the Golgi-rich fraction of fat cells.
    Smith MM; Robinson FW; Watanabe T; Kono T
    Biochim Biophys Acta; 1984 Aug; 775(2):121-8. PubMed ID: 6540601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of the glucose transporter from rat skeletal muscle.
    Wheeler TJ; Hauck MA
    Life Sci; 1987 Jun; 40(24):2309-16. PubMed ID: 3586860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of glucose and galactose toxicity on myo-inositol transport and metabolism in human skin fibroblasts in culture.
    Berry GT; Prantner JE; States B; Yandrasitz JR
    Pediatr Res; 1994 Feb; 35(2):141-7. PubMed ID: 8165046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstitution of protein translocation from detergent-solubilized Escherichia coli inverted vesicles: PrlA protein-deficient vesicles efficiently translocate precursor proteins.
    Watanabe M; Nicchitta CV; Blobel G
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1960-4. PubMed ID: 2408048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins.
    Lin SH
    J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of different phospholipids on the reconstitution of two functions of the lactose carrier of Escherichia coli.
    Seto-Young D; Chen CC; Wilson TH
    J Membr Biol; 1985; 84(3):259-67. PubMed ID: 3897546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles.
    Carruthers A; Melchior DL
    Biochemistry; 1984 Dec; 23(26):6901-11. PubMed ID: 6543323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose transport of Haloferax volcanii requires the Na(+)-electrochemical potential gradient and inhibitors for the mammalian glucose transporter inhibit the transport.
    Tawara E; Kamo N
    Biochim Biophys Acta; 1991 Dec; 1070(2):293-9. PubMed ID: 1764447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine.
    Cheng KH; Lepock JR; Hui SW; Yeagle PL
    J Biol Chem; 1986 Apr; 261(11):5081-7. PubMed ID: 3007490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partial purification of the Na+-dependent D-glucose transport system from renal brush border membranes.
    Im WB; Ling KY; Faust RG
    J Membr Biol; 1982; 65(1-2):131-7. PubMed ID: 7057458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of glucose-transporting vesicles from erythrocyte membranes disaggregated in detergent.
    Edwards PA
    Biochem J; 1977 Apr; 164(1):125-9. PubMed ID: 880225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.