These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6224790)

  • 1. Anion effects on in vitro sarcoplasmic reticulum function. Co-transport of anions with calcium.
    Chu A; Bick RJ; Tate CA; Van Winkle WB; Entman ML
    J Biol Chem; 1983 Sep; 258(17):10543-50. PubMed ID: 6224790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion effects on in vitro sarcoplasmic reticulum function. The relationship between anions and calcium flux.
    Chu A; Tate CA; Bick RJ; Van Winkle WB; Entman ML
    J Biol Chem; 1983 Feb; 258(3):1656-64. PubMed ID: 6218166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of dicarboxylic anion transport in the slower Ca2+ uptake in fetal cardiac sarcoplasmic reticulum.
    Fisher DJ; Tate CA; Phillips S
    Pediatr Res; 1992 Dec; 32(6):664-8. PubMed ID: 1337585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of dicarboxylic anion transport by fluorescein isothiocyanate in skeletal sarcoplasmic reticulum.
    Fisher DJ; Tate CA; Entman ML
    Arch Biochem Biophys; 1991 Jul; 288(1):208-14. PubMed ID: 1716869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification.
    Bick RJ; Van Winkle WB; Tate CA; Entman ML
    J Biol Chem; 1983 Apr; 258(7):4447-52. PubMed ID: 6300087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIDS inhibition of sarcoplasmic reticulum anion efflux and calcium transport.
    Campbell KP; MacLennan DH
    Ann N Y Acad Sci; 1980; 358():328-31. PubMed ID: 6938153
    [No Abstract]   [Full Text] [Related]  

  • 8. The mechanism of calcium uptake by liver microsomes: effect of anions and ionophores.
    Chan KM; Koepnick SL
    Biochim Biophys Acta; 1985 Sep; 818(3):291-8. PubMed ID: 2994726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide specificity of canine cardiac sarcoplasmic reticulum. Differential alteration of enzyme properties by detergent treatment.
    Tate CA; Bick RJ; Blaylock SL; Youker KA; Scherer NM; Entman ML
    J Biol Chem; 1989 May; 264(14):7809-13. PubMed ID: 2524475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible inhibition by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid of the plasma membrane (Ca(2+)+Mg2+)ATPase from kidney proximal tubules.
    Guilherme A; Meyer-Fernandes JR; Vieyra A
    Biochemistry; 1991 Jun; 30(23):5700-6. PubMed ID: 1828368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability.
    Levy D; Seigneuret M; Bluzat A; Rigaud JL
    J Biol Chem; 1990 Nov; 265(32):19524-34. PubMed ID: 2174042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation.
    Froehlich JP; Heller PF
    Biochemistry; 1985 Jan; 24(1):126-36. PubMed ID: 3158340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum.
    Narayanan N; Su N; Bedard P
    Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous calcium release from sarcoplasmic reticulum. Effect of local anesthetics.
    Volpe P; Palade P; Costello B; Mitchell RD; Fleischer S
    J Biol Chem; 1983 Oct; 258(20):12434-42. PubMed ID: 6630192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum.
    Lau YH
    Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-Ca2+ exchange catalyzed by the membrane-bound Ca2+, Mg2+-ATPase of sarcoplasmic reticulum vesicles.
    Kanazawa T; Takakuwa Y
    Curr Top Cell Regul; 1984; 24():423-34. PubMed ID: 6149890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enhancement of Ca2+ efflux from sarcoplasmic reticulum vesicles by urea.
    Chini EN; de Faria FO; Cardoso CM; de Meis L
    Arch Biochem Biophys; 1992 Nov; 299(1):73-6. PubMed ID: 1280064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of anion binding sites of sarcoplasmic reticulum vesicles by 35Cl-NMR.
    Vetter IR; Hanssum H; Bäumert HG
    Biochim Biophys Acta; 1988 Nov; 945(1):11-6. PubMed ID: 3179307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.