BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6225459)

  • 21. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical.
    Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE
    Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of Ca2+-ATPase substrates on the kinetic properties of SH-groups from the sarcoplasmic reticulum].
    Rubtsov AM
    Biokhimiia; 1982 Jun; 47(6):1046-54. PubMed ID: 6214283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle.
    Viner RI; Ferrington DA; Williams TD; Bigelow DJ; Schöneich C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):657-69. PubMed ID: 10359649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of storage of sarcoplasmic reticulum fragments on the Ca2+, Mg2+-ATPase.
    Nakamura J; Konishi K
    J Biochem; 1978 Jun; 83(6):1731-5. PubMed ID: 149789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosslinking of sarcoplasmic reticulum ATPase protein with 1,5-difluoro 2,4-dinitrobenzene.
    Bailin G
    Biochim Biophys Acta; 1980 Aug; 624(2):511-21. PubMed ID: 6448077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the (Ca2+ + Mg2+)-ATPase proteins from normal and dystrophic chicken sarcoplasmic reticulum.
    Hanna SD; Baskin RJ
    Biochim Biophys Acta; 1978 Apr; 540(1):144-50. PubMed ID: 147712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Interaction of platinum and palladium complexes with thiol groups of Ca2+-dependent ATPase from sarcoplasmic reticulum].
    Tat'ianenko LV; Lebedeva ON; Pivovarova TS; Raĭkhman LM; Moshkovskiĭ IuSh
    Vopr Med Khim; 1977; (3):343-6. PubMed ID: 142368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative damage to Ca2+-ATPase sarcoplasmic reticulum by HOCl and protective effect of some antioxidants.
    Strosová M; Skuciová M; Horáková L
    Biofactors; 2005; 24(1-4):111-6. PubMed ID: 16403970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium efflux from sarcoplasmic reticulum microsomes due to oxidation and sulfhydryl-binding agents.
    Scherer NM; Deamer DW
    J Free Radic Biol Med; 1986; 2(4):249-54. PubMed ID: 3034997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical modification and fluorescence labeling study of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N-substituted derivatives.
    Baba A; Nakamura T; Kawakita M
    J Biochem; 1986 Nov; 100(5):1137-47. PubMed ID: 2950079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly purified sarcoplasmic reticulum vesicles are devoid of Ca2+-independent ('basal') ATPase activity.
    Fernandez JL; Rosemblatt M; Hidalgo C
    Biochim Biophys Acta; 1980 Jul; 599(2):552-68. PubMed ID: 6105877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA).
    Dremina ES; Sharov VS; Kumar K; Zaidi A; Michaelis EK; Schöneich C
    Biochem J; 2004 Oct; 383(Pt 2):361-70. PubMed ID: 15245329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dinitrophenylation of rabbit skeletal sarcoplasmic reticulum ATPase protein.
    Bailin G
    Biochim Biophys Acta; 1980 May; 623(1):213-24. PubMed ID: 6445758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of an active transport of calcium. Ethoxyformylation of sarcoplasmic reticulum vesicles.
    Tenu JP; Chelis C; Leger DS; Carrette J
    J Biol Chem; 1976 Jul; 251(14):4322-9. PubMed ID: 132446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of sarcoplasmic reticulum Ca(2+)-ATPase induced by high-intensity exercise.
    Matsunaga S; Inashima S; Yamada T; Watanabe H; Hazama T; Wada M
    Pflugers Arch; 2003 Jun; 446(3):394-9. PubMed ID: 12684795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol in sarcoplasmic reticulum and the physiological significance of membrane fluidity.
    Johannsson A; Keightley CA; Smith GA; Metcalfe JC
    Biochem J; 1981 May; 196(2):505-11. PubMed ID: 6459086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypochlorous acid inhibits Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum.
    Favero TG; Colter D; Hooper PF; Abramson JJ
    J Appl Physiol (1985); 1998 Feb; 84(2):425-30. PubMed ID: 9475847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of increase in the ATPase activity of sarcoplasmic reticulum vesicles treated with n-alcohols.
    Hara K; Kasai M
    J Biochem; 1977 Oct; 82(4):1005-17. PubMed ID: 144724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid kinetic studies of SH oxidation-induced calcium release from sarcoplasmic reticulum vesicles.
    Donoso P; Rodríguez P; Marambio P
    Arch Biochem Biophys; 1997 May; 341(2):295-9. PubMed ID: 9169018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfhydryl oxidation and Ca2+ release from sarcoplasmic reticulum.
    Abramson JJ; Salama G
    Mol Cell Biochem; 1988; 82(1-2):81-4. PubMed ID: 3185520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.