BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6225770)

  • 21. Properties of the entry and exit reactions of the beta-methyl galactoside transport system in Escherichia coli.
    Wilson DB
    J Bacteriol; 1976 Jun; 126(3):1156-65. PubMed ID: 780342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inducer exclusion by glucose 6-phosphate in Escherichia coli.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Inada T; Aiba H; Postma PW
    Mol Microbiol; 1998 May; 28(4):755-65. PubMed ID: 9643543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. beta-D-phosphogalactoside galactohydrolase of Streptococcus faecalis and the inhibition of its synthesis by glucose.
    Heller K; Röschenthaler R
    Can J Microbiol; 1978 May; 24(5):512-9. PubMed ID: 418859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of the lacZ beta-galactosidase of Escherichia coli with some beta-D-galactopyranoside competitive inhibitors.
    Loeffler RS; Sinnott ML; Sykes BD; Withers SG
    Biochem J; 1979 Jan; 177(1):145-52. PubMed ID: 106843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy requirements for the transport of methylthio-beta-D-galactoside by Escherichia coli: measurement by microcalorimetry and by rates of oxygen consumption and carbon dioxide production.
    Long RA; Martin WG; Schneider H
    J Bacteriol; 1977 Jun; 130(3):1159-74. PubMed ID: 324976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of two sugar phosphate phosphatases from Streptococcus bovis and their potential involvement in inducer expulsion.
    Cook GM; Ye JJ; Russell JB; Saier MH
    J Bacteriol; 1995 Dec; 177(23):7007-9. PubMed ID: 7592500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium-dependent methyl 1-thio-beta-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium.
    Tokuda H; Kaback HR
    Biochemistry; 1977 May; 16(10):2130-6. PubMed ID: 16639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans.
    Pihlanto-Leppälä A; Söderling E; Mäkinen KK
    Scand J Dent Res; 1990 Apr; 98(2):112-9. PubMed ID: 2160725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inducer expulsion and the occurrence of an HPr(Ser-P)-activated sugar-phosphate phosphatase in Enterococcus faecalis and Streptococcus pyogenes.
    Ye JJ; Minarcik J; Saier MH
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():585-592. PubMed ID: 8868433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J; Thomas TD
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-proton-motive-force-dependent sodium efflux from the ruminal bacterium Streptococcus bovis: bound versus free pools.
    Strobel HJ; Russell JB
    Appl Environ Microbiol; 1989 Oct; 55(10):2664-8. PubMed ID: 2481426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of uncoupler on "downhill" substrate efflux of Escherichia coli is dependent on (Mg2+, Ca2+). Adenosine triphosphatase.
    Rotman B
    J Cell Physiol; 1976 Dec; 89(4):561-6. PubMed ID: 137904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy coupling to K+ uptake via the Trk system in Escherichia coli: the role of ATP.
    Stewart LM; Bakker EP; Booth IR
    J Gen Microbiol; 1985 Jan; 131(1):77-85. PubMed ID: 3886836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in active transport, intracellular adenosine 5'-triphosphate levels, macromolecular syntheses, and glycolysis in an energy-uncoupled mutant of Escherichia coli.
    Lieberman MA; Hong JS
    J Bacteriol; 1976 Mar; 125(3):1024-31. PubMed ID: 767319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coregulation of beta-galactoside uptake and hydrolysis by the hyperthermophilic bacterium Thermotoga neapolitana.
    Galperin MY; Noll KM; Romano AH
    Appl Environ Microbiol; 1997 Mar; 63(3):969-72. PubMed ID: 9285771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-transport of Na+ and methul-beta-D-thiogalactopyranoside mediated by the melibiose transport system of Escherichia coli.
    Tsuchiya T; Raven J; Wilson TH
    Biochem Biophys Res Commun; 1977 May; 76(1):26-31. PubMed ID: 17404
    [No Abstract]   [Full Text] [Related]  

  • 39. Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc.
    Hogema BM; Arents JC; Bader R; Eijkemans K; Yoshida H; Takahashi H; Aiba H; Postma PW
    Mol Microbiol; 1998 Nov; 30(3):487-98. PubMed ID: 9822815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport of alpha-aminoisobutyric acid by Streptococcus pyogenes and its derived L-form.
    Reizer J; Panos C
    J Bacteriol; 1982 Jan; 149(1):211-20. PubMed ID: 7033209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.