BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6225911)

  • 1. Carbinolamines and related structures--potential alkylating metabolites of clinically active anticancer drugs.
    Soloway AH; Brumbaugh RJ; Witiak DT
    J Theor Biol; 1983 Jun; 102(3):361-73. PubMed ID: 6225911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-methyl antitumour agents. A distinct class of anticancer drugs?
    Newell D; Gescher A; Harland S; Ross D; Rutty C
    Cancer Chemother Pharmacol; 1987; 19(2):91-102. PubMed ID: 3552281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopropamitosenes: novel bioreductive anticancer agents--mechanism of action and enzymic reduction.
    Moody CJ; O'Sullivan N; Stratford IJ; Stephens MA; Workman P; Bailey SM; Lewis A
    Anticancer Drugs; 1994 Jun; 5(3):367-72. PubMed ID: 7919462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (NSC-407347), an alkylating agent derived from 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (NSC-45388).
    Mizuno NS; Decker RW; Zakis B
    Biochem Pharmacol; 1975 Mar; 24(5):615-9. PubMed ID: 1168474
    [No Abstract]   [Full Text] [Related]  

  • 5. Novel 1-haloalkyl-2-nitroimidazole bioreductive alkylating agents.
    Heimbrook DC; Shyam K; Sartorelli AC
    Anticancer Drug Des; 1988 Mar; 2(4):339-50. PubMed ID: 3130072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrobenzyl derivatives as bioreductive alkylating agents: evidence for the reductive formation of a reactive intermediate.
    Kirkpatrick DL; Johnson KE; Sartorelli AC
    J Med Chem; 1986 Oct; 29(10):2048-52. PubMed ID: 3761323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2- and 6-methyl-1,4-naphthoquinone derivatives and potential bioreductive alkylating agents.
    Antonini I; Lin TS; Cosby LA; Dai YR; Sartorelli AC
    J Med Chem; 1982 Jun; 25(6):730-5. PubMed ID: 7097727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of nitrogen mustards with DNA.
    Hemminki K; Kallama S
    IARC Sci Publ; 1986; (78):55-70. PubMed ID: 3583398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry of chemotherapeutic alkylating agents and their interaction with DNA.
    Chiorcea-Paquim AM; Oliveira-Brett AM
    J Pharm Biomed Anal; 2023 Jan; 222():115036. PubMed ID: 36244084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prodrugs in cancer chemotherapy.
    Wilman DE
    Biochem Soc Trans; 1986 Apr; 14(2):375-82. PubMed ID: 3086154
    [No Abstract]   [Full Text] [Related]  

  • 11. Prodrugs of hydroxymethylpentamethylmelamine: a principal active metabolite of the antineoplastic agent hexamethylmelamine.
    Ghodrati F; Lavoie EJ
    Drug Des Discov; 1994 Feb; 11(2):135-47. PubMed ID: 8075301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophosphamide (NSC-26271)-related phosphoramide mustards- recent advances and historical perspective.
    Friedman OM; Wodinsky I; Myles A
    Cancer Treat Rep; 1976 Apr; 60(4):337-46. PubMed ID: 1277209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal absorption of phenesterin (NSC 104469), an alkylating cholesterol ester.
    Feldman EB; Paul H; Cheron R
    Cancer Chemother Rep; 1972 Feb; 56(1):1-7. PubMed ID: 5030805
    [No Abstract]   [Full Text] [Related]  

  • 14. An unexpected pathway for the metabolic degradation of 1,3-dialkyl-3-acyltriazenes.
    Rouzer CA; Thompson EJ; Skinner TL; Heavner PA; Bartolini WP; Mitchell K; Kurz E; Smith RH; Michejda CJ
    Biochem Pharmacol; 1993 Jul; 46(1):165-73. PubMed ID: 8347127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the alkylating ability of cyclophosphamide by fresh plasma.
    Hill BT; Harrap KR
    Chem Biol Interact; 1972 Jul; 5(2):117-25. PubMed ID: 5064934
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrochemistry of potential bioreductive alkylating quinones: its use in the development of new aziridinylquinones.
    Driebergen RJ; Holthuis JJ; Hulshoff A; Postma-Kelder SJ; Verboom W; Reinhoudt DN; Lelieveld P
    Anticancer Res; 1986; 6(4):605-19. PubMed ID: 3752941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the metabolism of N-methyl containing anti-tumour agents: 14CO2 breath analysis after administration of 14C-labelled N-methyl drugs, formaldehyde and formate in mice.
    Gescher A; Raymont C
    Biochem Pharmacol; 1981 Jun; 30(11):1245-52. PubMed ID: 6791650
    [No Abstract]   [Full Text] [Related]  

  • 18. A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines: application to the design of antitumor drugs for resistant cancer.
    Taatjes DJ; Fenick DJ; Gaudiano G; Koch TH
    Curr Pharm Des; 1998 Jun; 4(3):203-18. PubMed ID: 10197040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mono and bis(bioreductive) alkylating agents: synthesis and antitumor activities in a B16 melanoma model.
    Witiak DT; Loper JT; Ananthan S; Almerico AM; Verhoef VL; Filppi JA
    J Med Chem; 1989 Jul; 32(7):1636-42. PubMed ID: 2738896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The problem of oncostatic specificity of cyclophosphamide (NSC-26271): Studies on reactions that control the alkylating and cytotoxic activity.
    Hohorst HJ; Draeger U; Peter G; Voelcker G
    Cancer Treat Rep; 1976 Apr; 60(4):309-15. PubMed ID: 1277206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.