These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6225911)

  • 21. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds.
    Witte AB; Anestål K; Jerremalm E; Ehrsson H; Arnér ES
    Free Radic Biol Med; 2005 Sep; 39(5):696-703. PubMed ID: 16085187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutagenic damage to mammalian cells by therapeutic alkylating agents.
    Sanderson BJ; Shield AJ
    Mutat Res; 1996 Aug; 355(1-2):41-57. PubMed ID: 8781576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase II trials with procarbazine (NSC-77213), streptozotocin (NSC-85998), 6-THIOGUANINE (NSC-752), and CCNU (NSC-79037) in patients with metastatic cancer of the large bowel.
    Horton J; Mittelman A; Taylor SG; Jurkowitz L; Bennett JM; Ezdinli E; Colsky J; Hanley JA
    Cancer Chemother Rep; 1975; 59(2 Pt 1):333-40. PubMed ID: 125147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From old alkylating agents to new minor groove binders.
    Puyo S; Montaudon D; Pourquier P
    Crit Rev Oncol Hematol; 2014 Jan; 89(1):43-61. PubMed ID: 23972663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anticancer system created by acrolein and hydroxyl radical generated in enzymatic oxidation of spermine and other biochemical reactions.
    Alarcon RA
    Med Hypotheses; 2012 Oct; 79(4):522-30. PubMed ID: 22874453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity of mutagenicity.
    Singer B
    J Toxicol Environ Health; 1977 Jul; 2(6):1279-95. PubMed ID: 328918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase.
    Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study with three alkylating agents: mechlorethamine, cyclophosphamide, and uracil mustard.
    GOLD GL; SALVIN LG; SHNIDER BI
    Cancer Chemother Rep; 1962 Feb; 16():417-9. PubMed ID: 13899670
    [No Abstract]   [Full Text] [Related]  

  • 29. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.
    Lawley PD; Brookes P
    Biochem J; 1968 Sep; 109(3):433-47. PubMed ID: 4879534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2-Methylanthraquinone derivatives as potential bioreductive alkylating agents.
    Lin TS; Teicher BA; Sartorelli AC
    J Med Chem; 1980 Nov; 23(11):1237-42. PubMed ID: 7452674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triazene compounds: mechanism of action and related DNA repair systems.
    Marchesi F; Turriziani M; Tortorelli G; Avvisati G; Torino F; De Vecchis L
    Pharmacol Res; 2007 Oct; 56(4):275-87. PubMed ID: 17897837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutathione-S-transferase activates novel alkylating agents.
    Lyttle MH; Satyam A; Hocker MD; Bauer KE; Caldwell CG; Hui HC; Morgan AS; Mergia A; Kauvar LM
    J Med Chem; 1994 May; 37(10):1501-7. PubMed ID: 8182709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soft drugs. 2. Soft alkylating compounds as potential antitumor agents.
    Bodor N; Kaminski JJ
    J Med Chem; 1980 May; 23(5):566-9. PubMed ID: 7381858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA-directed alkylating agents. 6. Synthesis and antitumor activity of DNA minor groove-targeted aniline mustard analogues of pibenzimol (Hoechst 33258).
    Gravatt GL; Baguley BC; Wilson WR; Denny WA
    J Med Chem; 1994 Dec; 37(25):4338-45. PubMed ID: 7527862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative pharmacologic study in vitro and in vivo with cyclophosphamide (NSC-26271), cyclophosphamide metabolites, and plain nitrogen mustard compounds.
    Brock N
    Cancer Treat Rep; 1976 Apr; 60(4):301-8. PubMed ID: 1277205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The disposition of cyclophosphamide in a group of myeloma patients.
    Bramwell V; Calvert RT; Edwards G; Scarffe H; Crowther D
    Cancer Chemother Pharmacol; 1979; 3(4):253-9. PubMed ID: 535136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the metabolism of isopnosphamide (NSC-109724) in man.
    Norpoth K
    Cancer Treat Rep; 1976 Apr; 60(4):437-43. PubMed ID: 1277219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The metabolism of biological alkylating agents.
    Jones AR
    Drug Metab Rev; 1973; 2(1):71-100. PubMed ID: 4359524
    [No Abstract]   [Full Text] [Related]  

  • 39. The role of the N-(hydroxymethyl)melamines as antitumour agents: mechanism of action studies.
    Coley HM; Brooks N; Phillips DH; Hewer A; Jenkins TC; Jarman M; Judson IR
    Biochem Pharmacol; 1995 May; 49(9):1203-12. PubMed ID: 7763301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indirect oxidation of the antitumor agent procarbazine by tyrosinase--possible application in designing anti-melanoma prodrugs.
    Gasowska-Bajger B; Wojtasek H
    Bioorg Med Chem Lett; 2008 Jun; 18(11):3296-300. PubMed ID: 18457951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.