These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6226260)

  • 1. Inhibition by acarbose, nojirimycin and 1-deoxynojirimycin of glucosyltransferase produced by oral streptococci.
    Newbrun E; Hoover CI; Walker GJ
    Arch Oral Biol; 1983; 28(6):531-6. PubMed ID: 6226260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Streptococcus mutans glucosyltransferase inhibition by alpha-glucosidase inhibitors].
    Felgenhauer B; Trautner K
    Dtsch Zahnarztl Z; 1981; 36(12):841-4. PubMed ID: 6459227
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrases in rat small intestine.
    Samulitis BK; Goda T; Lee SM; Koldovský O
    Drugs Exp Clin Res; 1987; 13(8):517-24. PubMed ID: 2962844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acarbose and 1-deoxynojirimycin inhibit maltose and maltooligosaccharide hydrolysis of human small intestinal glucoamylase-maltase in two different substrate-induced modes.
    Breitmeier D; Günther S; Heymann H
    Arch Biochem Biophys; 1997 Oct; 346(1):7-14. PubMed ID: 9328278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of catalytic and glucan-binding activities of a streptococcal GTF forming insoluble glucans.
    Wright WG; Thelwell C; Svensson B; Russell RR
    Caries Res; 2002; 36(5):353-9. PubMed ID: 12399696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of agents on glucosyltransferases from Streptococcus mutans in solution and adsorbed to experimental pellicle.
    Wunder D; Bowen WH
    Arch Oral Biol; 1999 Mar; 44(3):203-14. PubMed ID: 10217511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of local immunization of hamsters with glucosyltransferase antigens on infection with Streptococcus sanguis.
    Smith DJ; Taubman MA; Ebersole JL
    Infect Immun; 1983 Oct; 42(1):156-62. PubMed ID: 6194115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucosyltransferase production by Streptococcus sanguis Challis and comparison with other oral streptococci.
    Buchan RA; Jenkinson HF
    Oral Microbiol Immunol; 1990 Apr; 5(2):63-71. PubMed ID: 2150879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An example of enzyme hysteresis. The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrase.
    Hanozet G; Pircher HP; Vanni P; Oesch B; Semenza G
    J Biol Chem; 1981 Apr; 256(8):3703-11. PubMed ID: 6452453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for the association of glucosyltransferases with the cell surface of oral streptococci.
    Kato C; Kuramitsu HK
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):153-7. PubMed ID: 1829422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic study of the inhibition of the honeybee haemolymph apha-glucosidase in vitro by BAYe 4609, BAYg 5421 and BAYn 5595.
    Bounias M
    Biochem Pharmacol; 1982 Sep; 31(17):2769-75. PubMed ID: 6215920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of seven inhibitors on invertases in homogenates of human dental plaque.
    Fiehn NE; Moe D
    Scand J Dent Res; 1983 Jun; 91(3):175-81. PubMed ID: 6224287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pseudotetrasaccharide acarbose inhibits pancreatic islet glucan-1,4-alpha-glucosidase activity in parallel with a suppressive action on glucose-induced insulin release.
    Salehi A; Panagiotidis G; Borg LA; Lundquist I
    Diabetes; 1995 Jul; 44(7):830-6. PubMed ID: 7789651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of oral streptococci by two-dimensional gel electrophoresis with direct activity stain for glycosyltransferases.
    Ando T; Tsumori H; Shimamura A; Sato Y; Mukasa H
    Oral Microbiol Immunol; 2003 Jun; 18(3):171-5. PubMed ID: 12753469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of miglitol and acarbose after an oral glucose load: a novel hypoglycaemic mechanism?
    Joubert PH; Venter HL; Foukaridis GN
    Br J Clin Pharmacol; 1990 Sep; 30(3):391-6. PubMed ID: 2223417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Inhibitors of alpha-glucosidase].
    Toeller M
    Journ Annu Diabetol Hotel Dieu; 1991; ():203-12. PubMed ID: 1886331
    [No Abstract]   [Full Text] [Related]  

  • 17. Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg.
    Vickerman MM; Sulavik MC; Clewell DB
    Infect Immun; 1995 Nov; 63(11):4524-7. PubMed ID: 7591096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by nojirimycin and 1-deoxynojirimycin of microsomal glucosidases from calf liver acting on the glycoprotein oligosaccharides Glc1-3Man9GlcNAc2.
    Hettkamp H; Bause E; Legler G
    Biosci Rep; 1982 Nov; 2(11):899-906. PubMed ID: 6218840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alpha-glucosidase inhibitors on mouth to caecum transit time in humans.
    Ladas SD; Frydas A; Papadopoulos A; Raptis SA
    Gut; 1992 Sep; 33(9):1246-8. PubMed ID: 1427379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition by maltose, isomaltose, and nigerose of the synthesis of high-molecular-weight D-glucans by the D-glucosyltransferases of Streptococcus sobrinus.
    McAlister D; Doyle RJ; Taylor KG
    Carbohydr Res; 1989 Apr; 187(1):131-8. PubMed ID: 2526680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.