These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6226327)

  • 1. Efficiency of energy conversion in model biological pumps. Optimization by linear nonequilibrium thermodynamic relations.
    Stucki JW; Compiani M; Caplan SR
    Biophys Chem; 1983 Sep; 18(2):101-9. PubMed ID: 6226327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux response coefficients of linear energy converters.
    Stucki JW
    Biophys Chem; 1983 Sep; 18(2):111-5. PubMed ID: 6626684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-force relationships for a six-state proton pump model: intrinsic uncoupling, kinetic equivalence of input and output forces, and domain of approximate linearity.
    Pietrobon D; Caplan SR
    Biochemistry; 1985 Oct; 24(21):5764-76. PubMed ID: 4084491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-inhibitor and uncoupler-inhibitor titrations. 1. Analysis with a linear model of chemiosmotic energy coupling.
    Pietrobon D; Caplan SR
    Biochemistry; 1986 Nov; 25(23):7682-90. PubMed ID: 2948564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport: conditions for linearity and symmetry far from equilibrium.
    Essig A; Caplan SR
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1647-51. PubMed ID: 6940178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and bioenergetics.
    Demirel Y; Sandler SI
    Biophys Chem; 2002 Jun; 97(2-3):87-111. PubMed ID: 12050002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies.
    Pietrobon D; Zoratti M; Azzone GF; Caplan SR
    Biochemistry; 1986 Feb; 25(4):767-75. PubMed ID: 3964642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenic proton transport in epithelial membranes.
    Steinmetz PR; Andersen OS
    J Membr Biol; 1982; 65(3):155-74. PubMed ID: 6460866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropy Production and Its Application to the Coupled Nonequilibrium Processes of ATP Synthesis.
    Nath S
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-equilibrium thermodynamics analysis of active transport within the framework of the chemiosotic theory.
    Lagarde AE
    Biochim Biophys Acta; 1976 Mar; 426(2):198-217. PubMed ID: 3223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation between leaks and slips in oxidative phosphorylation.
    Groen BH; Berden JA; van Dam K
    Biochim Biophys Acta; 1990 Aug; 1019(2):121-7. PubMed ID: 2207111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transduction of isothermal ratchets: generic aspects and specific examples close to and far from equilibrium.
    Parmeggiani A; Jülicher F; Ajdari A; Prost J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2127-40. PubMed ID: 11970005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermodynamic approach to the compromise between power and efficiency in muscle contraction.
    Santillán M; Angulo-Brown F
    J Theor Biol; 1997 Dec; 189(4):391-8. PubMed ID: 9446748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficiencies of the component steps of oxidative phosphorylation. I. A simple steady state theory.
    Gunter TE; Jensen BD
    Arch Biochem Biophys; 1986 Jul; 248(1):289-304. PubMed ID: 2425738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuation theorems and the nonequilibrium thermodynamics of molecular motors.
    Andrieux D; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011906. PubMed ID: 16907126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation.
    Stucki JW
    Eur J Biochem; 1980 Aug; 109(1):269-83. PubMed ID: 7408881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of proton transport coupled ATP synthesis.
    Turina P; Petersen J; Gräber P
    Biochim Biophys Acta; 2016 Jun; 1857(6):653-64. PubMed ID: 26940516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium linear behavior of biological systems. Existence of enzyme-mediated multidimensional inflection points.
    Rothschild KJ; Ellias SA; Essig A; Stanley HE
    Biophys J; 1980 May; 30(2):209-30. PubMed ID: 7260273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. delta-mu H-buffering by Na+ and K+ gradients in bacteria. Model and experimental systems.
    Drachev AL; Markin VS; Skulachev VP
    Biochim Biophys Acta; 1985 Jun; 811(2):197-215. PubMed ID: 2408665
    [No Abstract]   [Full Text] [Related]  

  • 20. The use of linear nonequilibrium thermodynamics in the study of renal physiology.
    Essig A; Caplan SR
    Am J Physiol; 1979 Mar; 236(3):F211-9. PubMed ID: 371416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.