These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6226635)

  • 1. Phage inactivation by aclacinomycin A and its analogues.
    Tanaka A; Sen K; Morita J; Komano T
    J Antibiot (Tokyo); 1983 Sep; 36(9):1242-4. PubMed ID: 6226635
    [No Abstract]   [Full Text] [Related]  

  • 2. Aclacinomycin A-inhibition of phage phi X174 DNA synthesis in vitro.
    Tanaka A; Morita J; Komano T
    J Antibiot (Tokyo); 1983 Jul; 36(7):900-6. PubMed ID: 6224768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Aclacinomycin A: a new antitumor antibiotic].
    Egorov LV; Ivanitskaia LP; Navashin SM
    Antibiotiki; 1982; 27(7):540-55. PubMed ID: 6753735
    [No Abstract]   [Full Text] [Related]  

  • 4. Ter mutation and susceptibility to phi X174 phage in E. coli K12.
    Ohkawa T
    Biochem Biophys Res Commun; 1979 Dec; 91(3):1051-6. PubMed ID: 160794
    [No Abstract]   [Full Text] [Related]  

  • 5. Microbial conversion of anthracycline antibiotics. I. Microbial conversion of aclacinomycin B to aclacinomycin A.
    Hoshino T; Sekine Y; Fujiwara A
    J Antibiot (Tokyo); 1983 Nov; 36(11):1458-62. PubMed ID: 6581152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the replication of a bacterial DNA virus by chloroquine and other 4-aminoquinoline drugs.
    Yielding KL
    Proc Soc Exp Biol Med; 1967 Jul; 125(3):780-3. PubMed ID: 15938265
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms for dye-mediated photodynamic action: singlet oxygen production, deoxyguanosine oxidation and phage inactivating efficiencies.
    Houba-Herin N; Calberg-Bacq CM; Piette J; Van de Vorst A
    Photochem Photobiol; 1982 Sep; 36(3):297-306. PubMed ID: 6216491
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of multivalent ions on the inactivation of bacteriophage phi X174 by lipopolysaccharide from Escherichia coli C.
    Rowatt E; Williams RJ
    Biochem J; 1985 Nov; 231(3):765-8. PubMed ID: 2934058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of bivalent ions in the inactivation of bacteriophage phi X174 by lipopolysaccharide from Escherichia coli C.
    Rowatt E
    Biochem J; 1984 Oct; 223(1):23-9. PubMed ID: 6238590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition of infectivity of bacteriophage phi X174 by high-valency metal cations and cyclic polyamines.
    Rowatt E; Williams RJ
    Biochem J; 1987 Aug; 245(3):641-7. PubMed ID: 2959276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous transmembrane tunnel formation mediated by phi X174 lysis protein E.
    Witte A; Wanner G; Bläsi U; Halfmann G; Szostak M; Lubitz W
    J Bacteriol; 1990 Jul; 172(7):4109-14. PubMed ID: 2141836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone.
    Oki T; Yoshimoto A; Matsuzawa Y; Takeuchi T; Umezawa H
    J Antibiot (Tokyo); 1980 Nov; 33(11):1331-40. PubMed ID: 6941952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of anthracycline antibiotics. I. Demethoxycarbonylation, 10-epimerization and 4-o-methylation of aclacinomycin A.
    Tanaka H; Yoshioka T; Shimauchi Y; Matsuzawa Y; Oki T; Inui T
    J Antibiot (Tokyo); 1980 Nov; 33(11):1323-30. PubMed ID: 6941951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of phi X174 protein E-mediated lysis on murein composition of Escherichia coli.
    Witte A; Wanner G; Lubitz W; Höltje JV
    FEMS Microbiol Lett; 1998 Jul; 164(1):149-57. PubMed ID: 9675861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical evaluation of a new anthracycline antibiotic, aclacinomycin-A, in patients with advanced malignant lymphoma.
    Warrell RP; Kempin SJ
    Am J Clin Oncol; 1983 Feb; 6(1):81-4. PubMed ID: 6573124
    [No Abstract]   [Full Text] [Related]  

  • 16. [Studies on the stability of aclacinomycin hydrochloride. I. Stability of solution of aclacinomycin hydrochloride (author's transl)].
    Mori S; Shindo N; Miura H; Oki T; Inui T
    Jpn J Antibiot; 1980 Apr; 33(4):466-71. PubMed ID: 7411850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifications of aclacinomycin T by aclacinomycin methyl esterase (RdmC) and aclacinomycin-10-hydroxylase (RdmB) from Streptomyces purpurascens.
    Wang Y; Niemi J; Airas K; Ylihonko K; Hakala J; Mäntsälä P
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):191-200. PubMed ID: 11004563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N4-aminocytidine, a nucleoside analog that has an exceptionally high mutagenic activity.
    Negishi K; Harada C; Ohara Y; Oohara K; Nitta N; Hayatsu H
    Nucleic Acids Res; 1983 Aug; 11(15):5223-33. PubMed ID: 6224136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosensitive DNA cleavage and phage inactivation by copper(II)-camptothecin.
    Kuwahara J; Suzuki T; Funakoshi K; Sugiura Y
    Biochemistry; 1986 Mar; 25(6):1216-21. PubMed ID: 3008823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the metabolism of aclacinomycin A (author's transl)].
    Oki T; Shibamoto N; Iguchi H; Shirai M
    Jpn J Antibiot; 1980 Feb; 33(2):163-8. PubMed ID: 6768910
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.